DragonRuby Game Toolkit Live Docs
The information contained here is all available via the DragonRuby Console. You can Open the DragonRuby Console by pressing [`] [~] [²] [^] [º] or [§] within your game.
To search docs you can type docs_search "SEARCH TERM"
or if you want to get fancy you can provide a lambda
to filter documentation:
docs_search { |entry| (entry.include? "Array") && (!entry.include? "Enumerable") }
Hello World
Welcome to DragonRuby Game Toolkit. Take the steps below to get started.
Join the Discord and Subscribe to the News Letter
Our Discord channel is http://discord.dragonruby.org.
The News Letter will keep you in the loop with regards to current DragonRuby Events: http://dragonrubydispatch.com.
Those who use DragonRuby are called Dragon Riders. This identity is incredibly important to us. When someone asks you:
What game engine do you use?
Reply with:
I am a Dragon Rider.
Watch Some Intro Videos
Each video is only 20 minutes and all of them will fit into a lunch break. So please watch them:
- Beginner Introduction to DragonRuby Game Toolkit: https://youtu.be/ixw7TJhU08E
- Intermediate Introduction to Ruby Syntax: https://youtu.be/HG-XRZ5Ppgc
- Intermediate Introduction to Arrays in Ruby: https://youtu.be/N72sEYFRqfo
The second and third videos are not required if you are proficient with Ruby, but *definitely* watch the first one.
You may also want to try this free course provided at http://dragonruby.school.
Getting Started Tutorial
This is a tutorial written by Ryan C Gordon (a Juggernaut in the industry who has contracted to Valve, Epic, Activision, and EA... check out his Wikipedia page: https://en.wikipedia.org/wiki/Ryan_C._Gordon).
Introduction
Welcome!
Here's just a little push to get you started if you're new to programming or game development.
If you want to write a game, it's no different than writing any other program for any other framework: there are a few simple rules that might be new to you, but more or less programming is programming no matter what you are building.
Did you not know that? Did you think you couldn't write a game because you're a "web guy" or you're writing Java at a desk job? Stop letting people tell you that you can't, because you already have everything you need.
Here, we're going to be programming in a language called "Ruby." In the interest of full disclosure, I (Ryan Gordon) wrote the C parts of this toolkit and Ruby looks a little strange to me (Amir Rajan wrote the Ruby parts, discounting the parts I mangled), but I'm going to walk you through the basics because we're all learning together, and if you mostly think of yourself as someone that writes C (or C++, C#, Objective-C), PHP, or Java, then you're only a step behind me right now.
Prerequisites
Here's the most important thing you should know: Ruby lets you do some complicated things really easily, and you can learn that stuff later. I'm going to show you one or two cool tricks, but that's all.
Do you know what an if statement is? A for-loop? An array? That's all you'll need to start.
The Game Loop
Ok, here are few rules with regards to game development with GTK:
- Your game is all going to happen under one function ...
- that runs 60 times a second ...
- and has to tell the computer what to draw each time.
That's an entire video game in one run-on sentence.
Here's that function. You're going to want to put this in mygame/app/main.rb, because that's where we'll look for it by default. Load it up in your favorite text editor.
def tick args args.outputs.labels << [580, 400, 'Hello World!'] end
Now run dragonruby
...did you get a window with "Hello World!" written in it? Good, you're officially a game developer!
Breakdown Of The tick
Method
mygame/app/main.rb
, is where the Ruby source code is located. This looks a little strange, so I'll break it down line by line. In Ruby, a '#' character starts a single-line comment, so I'll talk about this inline.
# This "def"ines a function, named "tick," which takes a single argument # named "args". DragonRuby looks for this function and calls it every # frame, 60 times a second. "args" is a magic structure with lots of # information in it. You can set variables in there for your own game state, # and every frame it will updated if keys are pressed, joysticks moved, # mice clicked, etc. def tick args # One of the things in "args" is the "outputs" object that your game uses # to draw things. Afraid of rendering APIs? No problem. In DragonRuby, # you use arrays to draw things and we figure out the details. # If you want to draw text on the screen, you give it an array (the thing # in the [ brackets ]), with an X and Y coordinate and the text to draw. # The "<<" thing says "append this array onto the list of them at # args.outputs.labels) args.outputs.labels << [580, 400, 'Hello World!'] end
Once your tick
function finishes, we look at all the arrays you made and figure out how to draw it. You don't need to know about graphics APIs. You're just setting up some arrays! DragonRuby clears out these arrays every frame, so you just need to add what you need _right now_ each time.
Rendering A Sprite
Now let's spice this up a little.
We're going to add some graphics. Each 2D image in DragonRuby is called a "sprite," and to use them, you just make sure they exist in a reasonable file format (png, jpg, gif, bmp, etc) and specify them by filename. The first time you use one, DragonRuby will load it and keep it in video memory for fast access in the future. If you use a filename that doesn't exist, you get a fun checkerboard pattern!
There's a "dragonruby.png" file included, just to get you started. Let's have it draw every frame with our text:
def tick args args.outputs.labels << [580, 400, 'Hello World!'] args.outputs.sprites << [576, 100, 128, 101, 'dragonruby.png'] end
(Pro Tip: you don't have to restart DragonRuby to test your changes; when you save main.rb, DragonRuby will notice and reload your program.)
That .sprites
line says "add a sprite to the list of sprites we're drawing, and draw it at position (576, 100) at a size of 128x101 pixels". You can find the image to draw at dragonruby.png.
Coordinate System and Virtual Canvas
Quick note about coordinates: (0, 0) is the bottom left corner of the screen, and positive numbers go up and to the right. This is more "geometrically correct," even if it's not how you remember doing 2D graphics, but we chose this for a simpler reason: when you're making Super Mario Brothers and you want Mario to jump, you should be able to add to Mario's y position as he goes up and subtract as he falls. It makes things easier to understand.
Also: your game screen is _always_ 1280x720 pixels. If you resize the window, we will scale and letterbox everything appropriately, so you never have to worry about different resolutions.
Ok, now we have an image on the screen, let's animate it:
def tick args args.state.rotation ||= 0 args.outputs.labels << [580, 400, 'Hello World!' ] args.outputs.sprites << [576, 100, 128, 101, 'dragonruby.png', args.state.rotation] args.state.rotation -= 1 end
Now you can see that this function is getting called a lot!
Game State
Here's a fun Ruby thing: args.state.rotation ||= 0
is shorthand for "if args.state.rotation isn't initialized, set it to zero." It's a nice way to embed your initialization code right next to where you need the variable.
args.state
is a place you can hang your own data. It's an open data structure that allows you to define properties that are arbitrarily nested. You don't need to define any kind of class.
In this case, the current rotation of our sprite, which is happily spinning at 60 frames per second. If you don't specify rotation (or alpha, or color modulation, or a source rectangle, etc), DragonRuby picks a reasonable default, and the array is ordered by the most likely things you need to tell us: position, size, name.
There Is No Delta Time
One thing we decided to do in DragonRuby is not make you worry about delta time: your function runs at 60 frames per second (about 16 milliseconds) and that's that. Having to worry about framerate is something massive triple-AAA games do, but for fun little 2D games? You'd have to work really hard to not hit 60fps. All your drawing is happening on a GPU designed to run Fortnite quickly; it can definitely handle this.
Since we didn't make you worry about delta time, you can just move the rotation by 1 every time and it works without you having to keep track of time and math. Want it to move faster? Subtract 2.
Handling User Input
Now, let's move that image around.
def tick args args.state.rotation ||= 0 args.state.x ||= 576 args.state.y ||= 100 if args.inputs.mouse.click args.state.x = args.inputs.mouse.click.point.x - 64 args.state.y = args.inputs.mouse.click.point.y - 50 end args.outputs.labels << [580, 400, 'Hello World!'] args.outputs.sprites << [args.state.x, args.state.y, 128, 101, 'dragonruby.png', args.state.rotation] args.state.rotation -= 1 end
Everywhere you click your mouse, the image moves there. We set a default location for it with args.state.x ||= 576
, and then we change those variables when we see the mouse button in action. You can get at the keyboard and game controllers in similar ways.
Coding On A Raspberry Pi
We have only tested DragonRuby on a Raspberry Pi 3, Models B and B+, but we believe it _should_ work on any model with comparable specs.
If you're running DragonRuby Game Toolkit on a Raspberry Pi, or trying to run a game made with the Toolkit on a Raspberry Pi, and it's really really slow-- like one frame every few seconds--then there's likely a simple fix.
You're probably running a desktop environment: menus, apps, web browsers, etc. This is okay! Launch the terminal app and type:
do raspi-config
It'll ask you for your password (if you don't know, try "raspberry"), and then give you a menu of options. Find your way to "Advanced Options", then "GL Driver", and change this to "GL (Full KMS)" ... not "fake KMS," which is also listed there. Save and reboot. In theory, this should fix the problem.
If you're _still_ having problems and have a Raspberry Pi 2 or better, go back to raspi-config and head over to "Advanced Options", "Memory split," and give the GPU 256 megabytes. You might be able to avoid this for simple games, as this takes RAM away from the system and reserves it for graphics. You can also try 128 megabytes as a gentler option.
Note that you can also run DragonRuby without X11 at all: if you run it from a virtual terminal it will render fullscreen and won't need the "Full KMS" option. This might be attractive if you want to use it as a game console sort of thing, or develop over ssh, or launch it from RetroPie, etc.
Conclusion
There is a lot more you can do with DragonRuby, but now you've already got just about everything you need to make a simple game. After all, even the most fancy games are just creating objects and moving them around. Experiment a little. Add a few more things and have them interact in small ways. Want something to go away? Just don't add it to args.output
anymore.
IMPORTANT: Go through all of the sample apps! Study them thoroughly!! No really, you should definitely do this!
Now that you've completed the Hello World tutorial. Head over to the `samples` directory. It is very very important that you study the sample apps thoroughly! Go through them in order. Here is a short description of each sample app.
Guided Samples
-
samples/00_learn_ruby_optional
: This directory contains sample apps that will help you learn the language. -
samples/01_rendering_basics
: This set of samples will show you how to render basic primitives such aslabels
,solids
,borders
,lines
,sprites
, and how to playsounds
. -
samples/02_input_basics
: This set of samples show you how to accept input from themouse
,keyboard
, andcontrollers
. -
samples/03_rendering_sprites
: This set of samples shows you all the different ways to render sprites (including how to use a sprite sheet). -
samples/04_physics_and_collision
: This set of samples shows how to do various types of collisions and physics. -
samples/05_mouse
: This set of samples show more advanced usages of the mouse. -
samples/06_save_load
: This set of samples show how to save and load game data. -
samples/07_advanced_rendering
: This set of samples show how to programmatically render sprites using render targets. -
samples/08_tweening_lerping_easing_functions
: This set of samples show how to perform animations. -
samples/09_performance
: This set of samples show how to handle performance issues when a large number of sprites on the screen. -
samples/10_advanced_debugging
: This set of samples show how advanced debugging techniques and testing techniques. -
samples/11_http
: This set of samples show how use http.
Sample Games
There are samples that contain the path samples/99_*
. The sample apps that are prefixed with 99_
show non-trivial implemementations for a real game:
- 3D Cube: Shows how to do faux 3D in DragonRuby.
- Dueling Starships: A two player top-down versus game where each player controls a ship.
- Flappy Dragon: DragonRuby's clone of Flappy Bird.
- Pong: A simple implementation of the game Pong.
- Snakemoji: The classic game of Snake but with all of the code written using emojis (sometimes you just have to have a little fun).
- Solar System: A simulation of our solar system.
- Crafting Starting Point: A starting point for those that want to build a crafting game.
- Dev Tools: A set of sample apps that show how you can extend DragonRuby's Console, starting point for a tile editor, and a starting point for a paint app.
- LOWREZ: Sample apps that show how to render at different resolutions.
- RPG: Various sample apps that show how to create narrative, topdown, tactical grid-based, and roguelike RPGs.
- Platformers: Various sample apps that show how to create different kinds of physics/collision based platformers.
Deploying To Itch.io
Once you've built your game, you're all set to deploy! Good luck in your game dev journey and if you get stuck, come to the Discord channel!
Creating Your Game Landing Page
Log into Itch.io and go to https://itch.io/game/new.
- Title: Give your game a Title. This value represents your `gametitle`.
- Project URL: Set your project url. This value represents your `gameid`.
- Classification: Keep this as Game.
- Kind of Project: Select HTML from the drop down list. Don't worry, the HTML project type _also supports binary downloads_.
- Uploads: Skip this section for now.
You can fill out all the other options later.
Update Your Game's Metadata
Point your text editor at mygame/metadata/game_metadata.txt and make it look like this:
NOTE: Remove the #
at the beginning of each line.
devid=bob devtitle=Bob The Game Developer gameid=mygame gametitle=My Game version=0.1
The devid
property is the username you use to log into Itch.io. The devtitle
is your name or company name (it can contain spaces). The gameid
is the Project URL value. The gametitle
is the name of your game (it can contain spaces). The version
can be any major.minor
number format.
Building Your Game For Distribution
Open up the terminal and run this from the command line:
./dragonruby-publish --only-package mygame
(if you're on Windows, don't put the "./" on the front. That's a Mac and Linux thing.)
A directory called ./build
will be created that contains your binaries. You can upload this to Itch.io manually.
For the HTML version of your game after you upload it. Check the checkbox labeled "This file will be played in the browser".
For subsequent updates you can use an automated deployment to Itch.io:
./dragonruby-publish mygame
DragonRuby will package _and publish_ your game to itch.io! Tell your friends to go to your game's very own webpage and buy it!
If you make changes to your game, just re-run dragonruby-publish and it'll update the downloads for you.
Deploying To Mobile Devices
If you have a Pro subscription, you also have the capability to deploy to mobile devices.
To deploy to iOS, you need to have a Mac running MacOS Catalina, an iOS device, and an active/paid Developer Account with Apple. From the Console type: $wizards.ios.start
and you will be guided through the deployment process.
To deploy to Android, you need to have an Android emulator/device, and a environment that is able to run Android SDK. dragonruby-publish
will create an APK for you. From there, you can sign the APK and install it to your device. The signing and installation procedure varies from OS to OS. Here's an example of what the command might look like:
> adb logcat -e mygame # you'll want to run this in a separate terminal > keytool -genkey -v -keystore mygame.keystore -alias mygame -keyalg RSA -keysize 2048 -validity 10000 > apksigner sign --ks mygame.keystore mygame-android.apk > adb install mygame-android.apk
DragonRuby's Philosophy
The following tenants of DragonRuby are what set us apart from other game engines. Given that Game Toolkit is a relatively new engine, there are definitely features that are missing. So having a big check list of "all the cool things" is not this engine's forte. This is compensated with a strong commitment to the following principals.
Challenge The Status Quo
Game engines of today are in a local maximum and don't take into consideration the challenges of this day and age. Unity and GameMaker specifically rot your brain. It's not sufficient to say:
But that's how we've always done it.
It's a hard pill to swallow, but forget blindly accepted best practices and try to figure out the underlying motivation for a specific approach to game development. Collaborate with us.
Continuity of Design
There is a programming idiom in software called "The Pit of Success". The term normalizes upfront pain as a necessity/requirement in the hopes that the investment will yield dividends "when you become successful" or "when the code becomes more complicated". This approach to development is strongly discouraged by us. It leads to over-architected and unnessary code; creates barriers to rapid prototyping and shipping a game; and overwhelms beginners who are new to the engine or programming in general.
DragonRuby's philosophy is to provide multiple options across the "make it fast" vs "make it right" spectrum, with incremental/intuitive transitions between the options provided. A concrete example of this philosophy would be render primitives: the spectrum of options allows renderable constructs take the form of tuples/arrays (easy to pickup, simple, and fast to code/prototype with), hashes (a little more work, but gives you the ability to add additional properties), open and string entities (more work than hashes, but yields cleaner apis), and finally - if you really need full power/flexibility in rendering - classes (which take the most amount of code and programming knowledge to create).
Release Early and Often
The biggest mistake game devs make is spending too much time in isolation building their game. Release something, however small, and release it soon.
Stop worrying about everything being pixel perfect. Don't wait until your game is 100% complete. Build your game publicly and iterate. Post in the #show-and-tell channel in the community Discord. You'll find a lot of support and encouragement there.
Real artists ship. Remember that.
Sustainable And Ethical Monetization
We all aspire to put food on the table doing what we love. Whether it is building games, writing tools to support game development, or anything in between.
Charge a fair amount of money for the things you create. It's expected and encouraged within the community. Give what you create away for free to those that can't afford it.
If you are gainfully employed, pay full price for the things you use. If you do end up getting something at a discount, pay the differnce "forward" to someone else.
Sustainable And Ethical Open Source
This goes hand in hand with sustainable and ethical monetization. The current state of open source is not sustainable. There is an immense amount of contributor burnout. Users of open source expect everything to be free, and few give back. This is a problem we want to fix (we're still trying to figure out the best solution).
So, don't be "that guy" in the Discord that says "DragonRuby should be free and open source!" You will be personally flogged by Amir.
People Over Entities
We prioritize the endorsement of real people over faceless entities. This game engine, and other products we create, are not insignificant line items of a large company. And you aren't a generic "commodity" or "corporate resource". So be active in the community Discord and you'll reap the benefits as more devs use DragonRuby.
Building A Game Should Be Fun And Bring Happiness
We will prioritize the removal of pain. The aesthetics of Ruby make it such a joy to work with, and we want to capture that within the engine.
Real World Application Drives Features
We are bombarded by marketing speak day in and day out. We don't do that here. There are things that are really great in the engine, and things that need a lot of work. Collaborate with us so we can help you reach your goals. Ask for features you actually need as opposed to anything speculative.
We want DragonRuby to *actually* help you build the game you want to build (as opposed to sell you something piece of demoware that doesn't work).
Frequently Asked Questions, Comments, and Concerns
Here are questions, comments, and concerns that frequently come up.
Frequently Asked Questions
What is DragonRuby LLP?
DragonRuby LLP is a partnership of four devs who came together with the goal of bringing the aesthetics and joy of Ruby, everywhere possible.
Under DragonRuby LLP, we offer a number of products (with more on the way):
- Game Toolkit (GTK): A 2D game engine that is compatible with modern gaming platforms.
- RubyMotion (RM): A compiler toolchain that allows you to build native, cross-platform mobile apps. http://rubymotion.com
All of the products above leverage a shared core called DragonRuby.
NOTE: From an official branding standpoint each one of the products is suffixed with "A DragonRuby LLP Product" tagline. Also, DragonRuby is _one word, title cased_.
NOTE: We leave the "A DragonRuby LLP Product" off of this one because that just sounds really weird.
NOTE: Devs who use DragonRuby are "Dragon Riders/Riders of Dragons". That's a bad ass identifier huh?
What is DragonRuby?
The response to this question requires a few subparts. First we need to clarify some terms. Specifically _language specification_ vs _runtime_.
Okay... so what is the difference between a language specification and a runtime?
A runtime is an _implementation_ of a language specification. When people say "Ruby," they are usually referring to "the Ruby 3.0+ language specification implemented via the CRuby/MRI Runtime."
But, there are many Ruby Runtimes: CRuby/MRI, JRuby, Truffle, Rubinius, Artichoke, and (last but certainly not least) DragonRuby.
Okay... what language specification does DragonRuby use then?
DragonRuby's goal is to be compliant with the ISO/IEC 30170:2012 standard. It's syntax is Ruby 2.x compatible, but also contains semantic changes that help it natively interface with platform specific libraries.
So... why another runtime?
The elevator pitch is:
DragonRuby is a Multilevel Cross-platform Runtime. The "multiple levels" within the runtime allows us to target platforms no other Ruby can target: PC, Mac, Linux, Raspberry Pi, WASM, iOS, Android, Nintendo Switch, PS4, Xbox, and Scadia.
What does Multilevel Cross-platform mean?
There are complexities associated with targeting all the platforms we support. Because of this, the runtime had to be architected in such a way that new platforms could be easily added (which lead to us partitioning the runtime internally):
- Level 1 we leverage a good portion of mRuby.
- Level 2 consists of optimizations to mRuby we've made given that our target platforms are well known.
- Level 3 consists of portable C libraries and their Ruby C-Extensions.
Levels 1 through 3 are fairly commonplace in many runtime implementations (with level 1 being the most portable, and level 3 being the fastest). But the DragonRuby Runtime has taken things a bit further:
- Level 4 consists of shared abstractions around hardware I/O and operating system resources. This level leverages open source and proprietary components within Simple DirectMedia Layer (a low level multimedia component library that has been in active development for 22 years and counting).
- Level 5 is a code generation layer which creates metadata that allows for native interoperability with host runtime libraries. It also includes OS specific message pump orchestrations.
- Level 6 is a Ahead of Time/Just in Time Ruby compiler built with LLVM. This compiler outputs _very_ fast platform specific bitcode, but only supports a subset of the Ruby language specification.
These levels allow us to stay up to date with open source implementations of Ruby; provide fast, native code execution on proprietary platforms; ensure good separation between these two worlds; and provides a means to add new platforms without going insane.
Cool cool. So given that I understand everything to this point, can we answer the original question? What is DragonRuby?
DragonRuby is a Ruby runtime implementation that takes all the lessons we've learned from MRI/CRuby, and merges it with the latest and greatest compiler and OSS technologies.
How is DragonRuby different than MRI?
DragonRuby supports a subset of MRI apis. Our target is to support all of mRuby's standard lib. There are challenges to this given the number of platforms we are trying to support (specifically console).
Does DragonRuby support Gems?
DragonRuby does not support gems because that requires the installation of MRI Ruby on the developer's machine (which is a non-starter given that we want DragonRuby to be a zero dependency runtime). While this seems easy for Mac and Linux, it is much harder on Windows and Raspberry Pi. mRuby has taken the approach of having a git repository for compatible gems and we will most likely follow suite: https://github.com/mruby/mgem-list.
Does DragonRuby have a REPL/IRB?
You can use DragonRuby's Console within the game to inspect object and execute small pieces of code. For more complex pieces of code create a file called repl.rb
and put it in mygame/app/repl.rb
:
- Any code you write in there will be executed when you change the file. You can organize different pieces of code using the
repl
method:
repl do puts "hello world" puts 1 + 1 end
- If you use the `repl` method, the code will be executed and the DragonRuby Console will automatically open so you can see the results (on Mac and Linux, the results will also be printed to the terminal).
- All
puts
statements will also be saved tologs/log.txt
. So if you want to stay in your editor and not look at the terminal, or the DragonRuby Console, you cantail
this file.
4. To ignore code in repl.rb
, instead of commenting it out, prefix repl
with the letter x
and it'll be ignored.
xrepl do # <------- line is prefixed with an "x" puts "hello world" puts 1 + 1 end # This code will be executed when you save the file. repl do puts "Hello" end repl do puts "This code will also be executed." end # use xrepl to "comment out" code xrepl do puts "This code will not be executed because of the x infront of repl". end
Does DragonRuby support pry
or have any other debugging facilities?
pry
is a gem that assumes you are using the MRI Runtime (which is incompatible with DragonRuby). Eventually DragonRuby will have a pry based experience that is compatible with a debugging infrastructure called LLDB. Take the time to read about LLDB as it shows the challenges in creating something that is compatible.
You can use DragonRuby's replay capabilities to troubleshoot:
- DragonRuby is hot loaded which gives you a very fast feedback loop (if the game throws an exception, it's because of the code you just added).
- Use
./dragonruby mygame --record
to create a game play recording that you can use to find the exception (you can replay a recoding by executing./dragonruby mygame --replay last_replay.txt
or through the DragonRuby Console using$gtk.recording.start_replay "last_replay.txt"
. - DragonRuby also ships with a unit testing facility. You can invoke the following command to run a test:
./dragonruby . --eval some_ruby_file.rb --no-tick
. - Get into the habit of adding debugging facilities within the game itself. You can add drawing primitives to
args.outputs.debug
that will render on top of your game but will be ignored in a production release. - Debugging something that runs at 60fps is (imo) not that helpful. The exception you are seeing could have been because of a change that occurred many frames ago.
Frequent Comments About Ruby as a Language Choice
But Ruby is dead.
Let's check the official source for the answer to this question: isrubydead.com: https://isrubydead.com/.
On a more serious note, Ruby's _quantity_ levels aren't what they used to be. And that's totally fine. Every one chases the new and shiny.
What really matters is _quality/maturity_. Here is the latest (StackOverflow Survey sorted by highest paid developers)[https://insights.stackoverflow.com/survey/2019#top-paying-technologies].
Let's stop making this comment shall we?
But Ruby is slow.
That doesn't make any sense. A language specification can't be slow... it's a language spec. Sure, an _implementation/runtime_ can be slow though, but then we'd have to talk about which runtime.
Dynamic languages are slow.
They are certainly slower than statically compiled languages. With the processing power and compiler optimizations we have today, dynamic languages like Ruby are _fast enough_.
Unless you are writing in some form of intermediate representation by hand, your language of choice also suffers this same fallacy of slow. Like, nothing is faster than a low level assembly-like language. So unless you're writing in that, let's stop making this comment.
NOTE: If you _are_ hand writing LLVM IR, we are always open to bringing on new partners with such a skill set. Email us ^_^.
Frequent Concerns
DragonRuby is not open source. That's not right.
The current state of open source is unsustainable. Contributors work for free, most all open source repositories are severely under-staffed, and burnout from core members is rampant.
We believe in open source very strongly. Parts of DragonRuby are in fact, open source. Just not all of it (for legal reasons, and because the IP we've created has value). And we promise that we are looking for (or creating) ways to _sustainably_ open source everything we do.
If you have ideas on how we can do this, email us!
If the reason above isn't sufficient, then definitely use something else.
All this being said, we do have parts of the engine open sourced on GitHub: https://github.com/dragonruby/dragonruby-game-toolkit-contrib/
DragonRuby is for pay. You should offer a free version.
If you can afford to pay for DragonRuby, you should (and will). We don't go around telling writers that they should give us their books for free, and only require payment if we read the entire thing. It's time we stop asking that of software products.
That being said, we will _never_ put someone out financially. We have income assistance for anyone that can't afford a license to any one of our products.
You qualify for a free, unrestricted license to DragonRuby products if any of the following items pertain to you:
- Your income is below $2,000.00 (USD) per month.
- You are under 18 years of age.
- You are a student of any type: traditional public school, home schooling, college, bootcamp, or online.
- You are a teacher, mentor, or parent who wants to teach a kid how to code.
- You work/worked in public service or at a charitable organization: for example public office, army, or any 501(c)(3) organization.
Just contact Amir at [email protected] with a short explanation of your current situation and he'll set you up. No questions asked.
But still, you should offer a free version. So I can try it out and see if I like it.
You can try our [web-based sandbox environment](). But it won't do the runtime justice. Or just come to our [Slack]() or [Discord]() channel and ask questions. We'd be happy to have a one on one video chat with you and show off all the cool stuff we're doing.
Seriously just buy it. Get a refund if you don't like it. We make it stupid easy to do so.
I still think you should do a free version. Think of all people who would give it a shot.
Free isn't a sustainable financial model. We don't want to spam your email. We don't want to collect usage data off of you either. We just want to provide quality toolchains to quality developers (as opposed to a large quantity of developers).
The people that pay for DragonRuby and make an effort to understand it are the ones we want to build a community around, partner with, and collaborate with. So having that small monetary wall deters entitled individuals that don't value the same things we do.
What if I build something with DragonRuby, but DragonRuby LLP becomes insolvent.
That won't happen if the development world stop asking for free stuff and non-trivially compensate open source developers. Look, we want to be able to work on the stuff we love, every day of our lives. And we'll go to great lengths to make that happen.
But, in the event that sad day comes, our partnership bylaws state that _all_ DragonRuby IP that can be legally open sourced, will be released under a permissive license.
CHEATSHEET: How To Determine What Frame You Are On
There is a property on state
called tick_count
that is incremented by DragonRuby every time the tick
method is called. The following code renders a label that displays the current tick_count
.
def tick args args.outputs.labels << [10, 670, "#{args.state.tick_count}"] end
CHEATSHEET: How To Get Current Framerate
Current framerate is a top level property on the Game Toolkit Runtime and is accessible via args.gtk.current_framerate
.
def tick args args.outputs.labels << [10, 710, "framerate: #{args.gtk.current_framerate.round}"] end
CHEATSHEET: How To Render A Sprite Using An Array
All file paths should use the forward slash /
*not* backslash . Game Toolkit includes a number of sprites in the
sprites
folder (everything about your game is located in the mygame
directory).
The following code renders a sprite with a width
and height
of 100
in the center of the screen.
args.outputs.sprites
is used to render a sprite.
def tick args args.outputs.sprites << [ 640 - 50, # X 360 - 50, # Y 100, # W 100, # H 'sprites/square-blue.png' # PATH ] end
CHEATSHEET: More Sprite Properties As An Array
Here are all the properties you can set on a sprite.
def tick args args.outputs.sprites << [ 100, # X 100, # Y 32, # W 64, # H 'sprites/square-blue.png', # PATH 0, # ANGLE 255, # ALPHA 0, # RED_SATURATION 255, # GREEN_SATURATION 0 # BLUE_SATURATION ] end
CHEATSHEET: Different Sprite Representations
Using ordinal positioning can get a little unruly given so many properties you have control over.
You can represent a sprite as a Hash
:
def tick args args.outputs.sprites << { x: 640 - 50, y: 360 - 50, w: 100, h: 100, path: 'sprites/square-blue.png', angle: 0, a: 255, r: 255, g: 255, b: 255, source_x: 0, source_y: 0, source_w: -1, source_h: -1, flip_vertically: false, flip_horizontally: false, angle_anchor_x: 0.5, angle_anchor_y: 1.0 } end
You can represent a sprite as an object
:
# Create type with ALL sprite properties AND primitive_marker class Sprite attr_accessor :x, :y, :w, :h, :path, :angle, :a, :r, :g, :b, :source_x, :source_y, :source_w, :source_h, :tile_x, :tile_y, :tile_w, :tile_h, :flip_horizontally, :flip_vertically, :angle_anchor_x, :angle_anchor_y def primitive_marker :sprite end end class BlueSquare < Sprite def initialize opts @x = opts[:x] @y = opts[:y] @w = opts[:w] @h = opts[:h] @path = 'sprites/square-blue.png' end end def tick args args.outputs.sprites << (BlueSquare.new x: 640 - 50, y: 360 - 50, w: 50, h: 50) end
CHEATSHEET: How To Render A Label
args.outputs.labels
is used to render labels.
Labels are how you display text. This code will go directly inside of the def tick args
method.
Here is the minimum code:
def tick args # X Y TEXT args.outputs.labels << [640, 360, "I am a black label."] end
CHEATSHEET: A Colored Label
def tick args # A colored label # X Y TEXT, RED GREEN BLUE ALPHA args.outputs.labels << [640, 360, "I am a redish label.", 255, 128, 128, 255] end
CHEATSHEET: Extended Label Properties
def tick args # A colored label # X Y TEXT SIZE ALIGNMENT RED GREEN BLUE ALPHA FONT FILE args.outputs.labels << [ 640, # X 360, # Y "Hello world", # TEXT 0, # SIZE_ENUM 1, # ALIGNMENT_ENUM 0, # RED 0, # GREEN 0, # BLUE 255, # ALPHA "fonts/coolfont.ttf" # FONT ] end
A SIZE_ENUM
of 0
represents "default size". A negative
value will decrease the label size. A positive
value will increase the label's size.
An ALIGNMENT_ENUM
of 0
represents "left aligned". 1
represents "center aligned". 2
represents "right aligned".
CHEATSHEET: Rendering A Label As A Hash
You can add additional metadata about your game within a label, which requires you to use a `Hash` instead.
def tick args args.outputs.labels << { x: 200, y: 550, text: "dragonruby", size_enum: 2, alignment_enum: 1, r: 155, g: 50, b: 50, a: 255, font: "fonts/manaspc.ttf", # You can add any properties you like (this will be ignored/won't cause errors) game_data_one: "Something", game_data_two: { value_1: "value", value_2: "value two", a_number: 15 } } end
CHEATSHEET: Getting The Size Of A Piece Of Text
You can get the render size of any string using args.gtk.calcstringbox
.
def tick args # TEXT SIZE_ENUM FONT w, h = args.gtk.calcstringbox("some string", 0, "font.ttf") # NOTE: The SIZE_ENUM and FONT are optional arguments. # Render a label showing the w and h of the text: args.outputs.labels << [ 10, 710, # This string uses Ruby's string interpolation literal: #{} "'some string' has width: #{w}, and height: #{h}." ] end
CHEATSHEET: How To Play A Sound
Sounds that end .wav
will play once:
def tick args # Play a sound every second if (args.state.tick_count % 60) == 0 args.outputs.sounds << 'something.wav' end end
Sounds that end .ogg
is considered background music and will loop:
def tick args # Start a sound loop at the beginning of the game if args.state.tick_count == 0 args.outputs.sounds << 'background_music.ogg' end end
If you want to play a .ogg
once as if it were a sound effect, you can do:
def tick args # Play a sound every second if (args.state.tick_count % 60) == 0 args.gtk.queue_sound 'some-ogg.ogg' end end
CHEATSHEET: Using args.state
To Store Your Game State
args.state
is a open data structure that allows you to define properties that are arbitrarily nested. You don't need to define any kind of class
.
To initialize your game state, use the ||=
operator. Any value on the right side of ||=
will only be assigned _once_.
To assign a value every frame, just use the =
operator, but _make sure_ you've initialized a default value.
def tick args # initialize your game state ONCE args.state.player.x ||= 0 args.state.player.y ||= 0 args.state.player.hp ||= 100 # increment the x position of the character by one every frame args.state.player.x += 1 # Render a sprite with a label above the sprite args.outputs.sprites << [ args.state.player.x, args.state.player.y, 32, 32, "player.png" ] args.outputs.labels << [ args.state.player.x, args.state.player.y - 50, args.state.player.hp ] end
CHEATSHEET: Troubleshoot Performance
- If you're using
Array
s for your primitives (args.outputs.sprites << []
), useHash
instead (args.outputs.sprites << { x: ... }
). - If you're using
Entity
for your primitives (args.outputs.sprites << args.state.new_entity
), useStrictEntity
instead (args.outputs.sprites << args.state.new_entity_strict
). - Use
.each
instead of.map
if you don't care about the return value. - When concatenating primitives to outputs, do them in bulk. Instead of:
args.state.bullets.each do |bullet| args.outputs.sprites << bullet.sprite end
do
args.outputs.sprites << args.state.bullets.map do |b| b.sprite end
5. Use args.outputs.static_
variant for things that don't change often (take a look at the Basic Gorillas sample app and Dueling Starships sample app to see how static_
is leveraged.
6. Consider using a render_target
if you're doing some form of a camera that moves a lot of primitives (take a look at the Render Target sample apps for more info).
DOCS: GTK::Runtime
The GTK::Runtime class is the core of DragonRuby. It is globally accessible via $gtk
.
DOCS: GTK::Runtime#reset
This function will reset Kernel.tick_count to 0 and will remove all data from args.state.
DOCS: GTK::Runtime#calcstringbox
This function returns the width and height of a string.
def tick args args.state.string_size ||= args.gtk.calcstringbox "Hello World" args.state.string_size_font_size ||= args.gtk.calcstringbox "Hello World" end
DOCS: GTK::Runtime#write_file
This function takes in two parameters. The first paramter is the file path and assumes the the game directory is the root. The second parameter is the string that will be written. The method overwrites whatever is currently in the file. Use GTK::Runtime#append_file
to append to the file as opposed to overwriting.
def tick args if args.inputs.mouse.click args.gtk.write_file "last-mouse-click.txt", "Mouse was clicked at #{args.state.tick_count}." end end
DOCS: Array
The Array class has been extend to provide methods that will help in common game development tasks. Array is one of the most powerful classes in Ruby and a very fundamental component of Game Toolkit.
DOCS: Array#map
The function given a block returns a new Enumerable
of values.
Example of using Array#map
in conjunction with args.state
and args.outputs.sprites
to render sprites to the screen.
def tick args # define the colors of the rainbow in ~args.state~ # as an ~Array~ of ~Hash~es with :order and :name. # :order will be used to determine render location # and :name will be used to determine sprite path. args.state.rainbow_colors ||= [ { order: 0, name: :red }, { order: 1, name: :orange }, { order: 2, name: :yellow }, { order: 3, name: :green }, { order: 4, name: :blue }, { order: 5, name: :indigo }, { order: 6, name: :violet }, ] # render sprites diagonally to the screen # with a width and height of 50. args.outputs .sprites << args.state .rainbow_colors .map do |color| # <-- ~Array#map~ usage [ color[:order] * 50, color[:order] * 50, 50, 50, "sprites/square-#{color[:name]}.png" ] end end
DOCS: Array#each
The function, given a block, invokes the block for each item in the Array
. Array#each
is synonymous to foreach constructs in other languages.
Example of using Array#each
in conjunction with args.state
and args.outputs.sprites
to render sprites to the screen:
def tick args # define the colors of the rainbow in ~args.state~ # as an ~Array~ of ~Hash~es with :order and :name. # :order will be used to determine render location # and :name will be used to determine sprite path. args.state.rainbow_colors ||= [ { order: 0, name: :red }, { order: 1, name: :orange }, { order: 2, name: :yellow }, { order: 3, name: :green }, { order: 4, name: :blue }, { order: 5, name: :indigo }, { order: 6, name: :violet }, ] # render sprites diagonally to the screen # with a width and height of 50. args.state .rainbow_colors .map do |color| # <-- ~Array#each~ usage args.outputs.sprites << [ color[:order] * 50, color[:order] * 50, 50, 50, "sprites/square-#{color[:name]}.png" ] end end
DOCS: Array#reject_nil
Returns an Enumerable
rejecting items that are nil
, this is an alias for Array#compact
:
repl do a = [1, nil, 4, false, :a] puts a.reject_nil # => [1, 4, false, :a] puts a.compact # => [1, 4, false, :a] end
DOCS: Array#reject_false
Returns an `Enumerable` rejecting items that are `nil` or `false`.
repl do a = [1, nil, 4, false, :a] puts a.reject_false # => [1, 4, :a] end
DOCS: Array#product
Returns all combinations of values between two arrays.
Here are some examples of using product
. Paste the following code at the bottom of main.rb and save the file to see the results:
repl do a = [0, 1] puts a.product # => [[0, 0], [0, 1], [1, 0], [1, 1]] end
repl do a = [ 0, 1] b = [:a, :b] puts a.product b # => [[0, :a], [0, :b], [1, :a], [1, :b]] end
DOCS: Array#map_2d
Assuming the array is an array of arrays, Given a block, each 2D array index invoked against the block. A 2D array is a common way to store data/layout for a stage.
repl do stage = [ [:enemy, :empty, :player], [:empty, :empty, :empty], [:enemy, :empty, :enemy], ] occupied_tiles = stage.map_2d do |row, col, tile| if tile == :empty nil else [row, col, tile] end end.reject_nil puts "Stage:" puts stage puts "Occupied Tiles" puts occupied_tiles end
DOCS: Array#include_any?
Given a collection of items, the function will return true
if any of self
's items exists in the collection of items passed in:
DOCS: Array#any_intersect_rect?
Assuming the array contains objects that respond to left
, right
, top
, bottom
, this method returns true
if any of the elements within the array intersect the object being passed in. You are given an optional parameter called tolerance
which informs how close to the other rectangles the elements need to be for it to be considered intersecting.
The default tolerance is set to 0.1
, which means that the primitives are not considered intersecting unless they are overlapping by more than 0.1
.
repl do # Here is a player class that has position and implement # the ~attr_rect~ contract. class Player attr_rect attr_accessor :x, :y, :w, :h def initialize x, y, w, h @x = x @y = y @w = w @h = h end def serialize { x: @x, y: @y, w: @w, h: @h } end def inspect "#{serialize}" end def to_s "#{serialize}" end end # Here is a definition of two walls. walls = [ [10, 10, 10, 10], { x: 20, y: 20, w: 10, h: 10 }, ] # Display the walls. puts "Walls." puts walls puts "" # Check any_intersect_rect? on player player = Player.new 30, 20, 10, 10 puts "Is Player #{player} touching wall?" puts (walls.any_intersect_rect? player) # => false # The value is false because of the default tolerance is 0.1. # The overlap of the player rect and any of the wall rects is # less than 0.1 (for those that intersect). puts "" player = Player.new 9, 10, 10, 10 puts "Is Player #{player} touching wall?" puts (walls.any_intersect_rect? player) # => true puts "" end
DOCS: GTK::Outputs
Outputs is how you render primitives to the screen. The minimal setup for rendering something to the screen is via a tick
method defined in mygame/app/main.rb
def tick args # code goes here end
DOCS: GTK::Outputs#solids
Add primitives to this collection to render a solid to the screen.
Rendering a solid using an Array
Creates a solid black rectangle located at 100, 100. 160 pixels wide and 90 pixels tall.
def tick args # X Y WIDTH HEIGHT args.outputs.solids << [100, 100, 160, 90] end
Rendering a solid using an Array with colors and alpha
The value for the color and alpha is an number between 0
and 255
. The alpha property is optional and will be set to 255
if not specified.
Creates a green solid rectangle with an opacity of 50%.
def tick args # X Y WIDTH HEIGHT RED GREEN BLUE ALPHA args.outputs.solids << [100, 100, 160, 90, 0, 255, 0, 128] end
Rendering a solid using a Hash
If you want a more readable invocation. You can use the following hash to create a solid. Any parameters that are not specified will be given a default value. The keys of the hash can be provided in any order.
def tick args args.outputs.solids << { x: 0, y: 0, w: 100, h: 100, r: 0, g: 255, b: 0, a: 255 } end
Rendering a solid using a Class
You can also create a class with solid/border properties and render it as a primitive. ALL properties must on the class. *Additionally*, a method called primitive_marker
must be defined on the class.
Here is an example:
# Create type with ALL solid properties AND primitive_marker class Solid attr_accessor :x, :y, :w, :h, :r, :g, :b, :a def primitive_marker :solid end end # Inherit from type class Square < Solid # constructor def initialize x, y, size self.x = x self.y = y self.w = size self.h = size end end def tick args # render solid/border args.outputs.solids << Square.new(10, 10, 32) end
DOCS: GTK::Outputs#borders
Add primitives to this collection to render an unfilled solid to the screen. Take a look at the documentation for Outputs#solids.
The only difference between the two primitives is where they are added.
Instead of using args.outputs.solids
:
def tick args # X Y WIDTH HEIGHT args.outputs.solids << [100, 100, 160, 90] end
You have to use args.outputs.borders
:
def tick args # X Y WIDTH HEIGHT args.outputs.borders << [100, 100, 160, 90] end
DOCS: GTK::Outputs#screenshots
Add a hash to this collection to take a screenshot and save as png file. The keys of the hash can be provided in any order.
def tick args args.outputs.screenshots << { x: 0, y: 0, w: 100, h: 100, # Which portion of the screen should be captured path: 'screenshot.png', # Output path of PNG file (inside game directory) r: 255, g: 255, b: 255, a: 0 # Optional chroma key } end
Chroma key (Making a color transparent)
By specifying the r, g, b and a keys of the hash you change the transparency of a color in the resulting PNG file. This can be useful if you want to create files with transparent background like spritesheets. The transparency of the color specified by r
, g
, b
will be set to the transparency specified by a
.
The example above sets the color white (255, 255, 255) as transparent.
DOCS: GTK::Mouse
The mouse is accessible via args.inputs.mouse
:
def tick args # Rendering a label that shows the mouse's x and y position (via args.inputs.mouse). args.outputs.labels << [ 10, 710, "The mouse's position is: #{args.inputs.mouse.x} #{args.inputs.mouse.y}." ] end
The mouse has the following properties.
args.inputs.mouse.x
: Returns the x position of the mouse.args.inputs.mouse.y
: Returns the y position of the mouse.args.inputs.mouse.moved
: Returns true if the mouse moved during the tick.args.inputs.mouse.moved_at
: Returns the tick_count (args.state.tick_count
) that the mouse was moved at. This property will benil
if the mouse didn't move.args.inputs.mouse.global_moved_at
: Returns the global tick_count (Kernel.global_tick_count
) that the mouse was moved at. This property will benil
if the mouse didn't move.args.inputs.mouse.click
: Returns aGTK::MousePoint
for that specific frame (args.state.tick_count
) if the mouse button was pressed.args.inputs.mouse.previous_click
: Returns aGTK::MousePoint
for the previous frame (args.state.tick_count - 1
) if the mouse button was pressed.args.inputs.mouse.up
: Returns true if for that specific frame (args.state.tick_count
) if the mouse button was released.args.inputs.mouse.point
|args.inputs.mouse.position
: Returns anArray
which contains thex
andy
position of the mouse.args.inputs.mouse.has_focus
: Returns true if the game window has the mouse's focus.args.inputs.mouse.wheel
: Returns anGTK::OpenEntity
that contains anx
andy
property which represents how much the wheel has moved. If the wheel has not moved within the tick, this property will benil
.args.inputs.mouse.button_left
: Returns true if the left mouse button is down.args.inputs.mouse.button_right
: Returns true if the right mouse button is down.args.inputs.mouse.button_middle
: Returns true if the middle mouse button is down.args.inputs.mouse.button_bits
: Gives the bits for each mouse button and its current state.
DOCS: GTK::MousePoint
The GTK::MousePoint
has the following properties.
x
: Integer representing the mouse's x.y
: Integer representing the mouse's y.point
: Array with thex
andy
values.w
: Width of the point that always returns0
(included so that it can seemlessly work withGTK::Geometry
functions).h
: Height of the point that always returns0
(included so that it can seemlessly work withGTK::Geometry
functions).left
: This value is the same asx
(included so that it can seemlessly work withGTK::Geometry
functions).right
: This value is the same asx
(included so that it can seemlessly work withGTK::Geometry
functions).top
: This value is the same asy
(included so that it can seemlessly work withGTK::Geometry
functions).bottom
: This value is the same asy
(included so that it can seemlessly work withGTK::Geometry
functions).created_at
: The tick (args.state.tick_count
) that this structure was created.global_created_at
: The global tick (Kernel.global_tick_count
) that this structure was created.
DOCS: GTK::OpenEntity
GTK::OpenEntity
is accessible within the DragonRuby's top level tick
function via the args.state
property.
def tick args args.state.x ||= 100 args.outputs.labels << [10, 710, "value of x is: #{args.state.x}."] end
The primary benefit of using args.state
as opposed to instance variables is that GTK::OpenEntity
allows for arbitrary nesting of properties without the need to create intermediate objects.
For example:
def tick args # intermediate player object does not need to be created args.state.player.x ||= 100 args.state.player.y ||= 100 args.outputs.labels << [ 10, 710, "player x, y is:#{args.state.player.x}, #{args.state.player.y}." ] end
DOCS: GTK::OpenEntity#as_hash
Returns a reference to the GTK::OpenEntity
as a Hash
. This property is useful when you want to treat args.state
as a Hash
and invoke methods such as Hash#each
.
Example:
def tick args args.state.x ||= 100 args.state.y ||= 100 values = args.state .as_hash .map { |k, v| "#{k} #{v}" } args.outputs.labels << values.map.with_index do |v, i| [ 10, 710 - (30 * i), v ] end end
DOCS: Numeric#frame_index
This function is helpful for determining the index of frame-by-frame sprite animation. The numeric value self
represents the moment the animation started.
frame_index
takes three additional parameters:
- How many frames exist in the sprite animation.
- How long to hold each animation for.
- Whether the animation should repeat.
frame_index
will return nil
if the time for the animation is out of bounds of the parameter specification.
Example using variables:
def tick args start_looping_at = 0 number_of_sprites = 6 number_of_frames_to_show_each_sprite = 4 does_sprite_loop = true sprite_index = start_looping_at.frame_index number_of_sprites, number_of_frames_to_show_each_sprite, does_sprite_loop sprite_index ||= 0 args.outputs.sprites << [ 640 - 50, 360 - 50, 100, 100, "sprites/dragon-#{sprite_index}.png" ] end
Example using named parameters:
def tick args start_looping_at = 0 sprite_index = start_looping_at.frame_index count: 6, hold_for: 4, repeat: true, tick_count_override: args.state.tick_count sprite_index ||= 0 args.outputs.sprites << [ 640 - 50, 360 - 50, 100, 100, "sprites/dragon-#{sprite_index}.png" ] end
DOCS: Numeric#elapsed_time
For a given number, the elapsed frames since that number is returned. `Kernel.tick_count` is used to determine how many frames have elapsed. An optional numeric argument can be passed in which will be used instead of `Kernel.tick_count`.
Here is an example of how elapsed_time can be used.
def tick args args.state.last_click_at ||= 0 # record when a mouse click occurs if args.inputs.mouse.click args.state.last_click_at = args.state.tick_count end # Use Numeric#elapsed_time to determine how long it's been if args.state.last_click_at.elapsed_time > 120 args.outputs.labels << [10, 710, "It has been over 2 seconds since the mouse was clicked."] end end
And here is an example where the override parameter is passed in:
def tick args args.state.last_click_at ||= 0 # create a state variable that tracks time at half the speed of args.state.tick_count args.state.simulation_tick = args.state.tick_count.idiv 2 # record when a mouse click occurs if args.inputs.mouse.click args.state.last_click_at = args.state.simulation_tick end # Use Numeric#elapsed_time to determine how long it's been if (args.state.last_click_at.elapsed_time args.state.simulation_tick) > 120 args.outputs.labels << [10, 710, "It has been over 4 seconds since the mouse was clicked."] end end
DOCS: Numeric#elapsed?
Returns true if Numeric#elapsed_time
is greater than the number. An optional parameter can be passed into elapsed?
which is added to the number before evaluating whether elapsed?
is true.
Example usage (no optional parameter):
def tick args args.state.box_queue ||= [] if args.state.box_queue.empty? args.state.box_queue << { name: :red, destroy_at: args.state.tick_count + 60 } args.state.box_queue << { name: :green, destroy_at: args.state.tick_count + 60 } args.state.box_queue << { name: :blue, destroy_at: args.state.tick_count + 120 } end boxes_to_destroy = args.state .box_queue .find_all { |b| b[:destroy_at].elapsed? } if !boxes_to_destroy.empty? puts "boxes to destroy count: #{boxes_to_destroy.length}" end boxes_to_destroy.each { |b| puts "box #{b} was elapsed? on #{args.state.tick_count}." } args.state.box_queue -= boxes_to_destroy end
Example usage (with optional parameter):
def tick args args.state.box_queue ||= [] if args.state.box_queue.empty? args.state.box_queue << { name: :red, create_at: args.state.tick_count + 120, lifespan: 60 } args.state.box_queue << { name: :green, create_at: args.state.tick_count + 120, lifespan: 60 } args.state.box_queue << { name: :blue, create_at: args.state.tick_count + 120, lifespan: 120 } end # lifespan is passed in as a parameter to ~elapsed?~ boxes_to_destroy = args.state .box_queue .find_all { |b| b[:create_at].elapsed? b[:lifespan] } if !boxes_to_destroy.empty? puts "boxes to destroy count: #{boxes_to_destroy.length}" end boxes_to_destroy.each { |b| puts "box #{b} was elapsed? on #{args.state.tick_count}." } args.state.box_queue -= boxes_to_destroy end
DOCS: Numeric#created?
Returns true if Numeric#elapsed_time == 0
. Essentially communicating that number is equal to the current frame.
Example usage:
def tick args args.state.box_queue ||= [] if args.state.box_queue.empty? args.state.box_queue << { name: :red, create_at: args.state.tick_count + 60 } end boxes_to_spawn_this_frame = args.state .box_queue .find_all { |b| b[:create_at].new? } boxes_to_spawn_this_frame.each { |b| puts "box #{b} was new? on #{args.state.tick_count}." } args.state.box_queue -= boxes_to_spawn_this_frame end
DOCS: Kernel
Kernel in the DragonRuby Runtime has patches for how standard out is handled and also contains a unit of time in games called a tick.
DOCS: Kernel::tick_count
Returns the current tick of the game. This value is reset if you call $gtk.reset.
DOCS: Kernel::global_tick_count
Returns the current tick of the application from the point it was started. This value is never reset.
Open Source
Follows is a source code listing for all files that have been open sourced. This code can be found in the ./samples
directory and online at https://github.com/DragonRuby/dragonruby-game-toolkit-contrib/.
Learn Ruby Optional - Beginner Ruby Primer - automation.rb
# ./samples/00_learn_ruby_optional/00_beginner_ruby_primer/app/automation.rb # ========================================================================== # _ _ ________ __ _ _____ _____ _______ ______ _ _ _ _ _ _ # | | | | ____\ \ / / | | |_ _|/ ____|__ __| ____| \ | | | | | | # | |__| | |__ \ \_/ / | | | | | (___ | | | |__ | \| | | | | | # | __ | __| \ / | | | | \___ \ | | | __| | . ` | | | | | # | | | | |____ | | | |____ _| |_ ____) | | | | |____| |\ |_|_|_|_| # |_| |_|______| |_| |______|_____|_____/ |_| |______|_| \_(_|_|_|_) # # # | # | # | # | # | # | # | # | # | # | # \ | / # \ | / # + # # If you are new to the programming language Ruby, then you may find the # following code a bit overwhelming. Come back to this file when you have # a better grasp of Ruby and Game Toolkit. # # What follows is an automations script # that can be run via terminal: # ./samples/00_beginner_ruby_primer $ ../../dragonruby . --eval app/automation.rb # ========================================================================== $gtk.reset $gtk.scheduled_callbacks.clear $gtk.schedule_callback 10 do $gtk.console.set_command 'puts "Hello DragonRuby!"' end $gtk.schedule_callback 20 do $gtk.console.eval_the_set_command end $gtk.schedule_callback 30 do $gtk.console.set_command 'outputs.solids << [910, 200, 100, 100, 255, 0, 0]' end $gtk.schedule_callback 40 do $gtk.console.eval_the_set_command end $gtk.schedule_callback 50 do $gtk.console.set_command 'outputs.solids << [1010, 200, 100, 100, 0, 0, 255]' end $gtk.schedule_callback 60 do $gtk.console.eval_the_set_command end $gtk.schedule_callback 70 do $gtk.console.set_command 'outputs.sprites << [1110, 200, 100, 100, "sprites/dragon_fly_0.png"]' end $gtk.schedule_callback 80 do $gtk.console.eval_the_set_command end $gtk.schedule_callback 90 do $gtk.console.set_command "outputs.labels << [1210, 200, state.tick_count, 0, 255, 0]" end $gtk.schedule_callback 100 do $gtk.console.eval_the_set_command end $gtk.schedule_callback 110 do $gtk.console.set_command "state.sprite_frame = state.tick_count.idiv(4).mod(6)" end $gtk.schedule_callback 120 do $gtk.console.eval_the_set_command end $gtk.schedule_callback 130 do $gtk.console.set_command "outputs.labels << [1210, 170, state.sprite_frame, 0, 255, 0]" end $gtk.schedule_callback 140 do $gtk.console.eval_the_set_command end $gtk.schedule_callback 150 do $gtk.console.set_command "state.sprite_path = \"sprites/dragon_fly_\#{state.sprite_frame}.png\"" end $gtk.schedule_callback 160 do $gtk.console.eval_the_set_command end $gtk.schedule_callback 170 do $gtk.console.set_command "outputs.labels << [910, 330, \"path: \#{state.sprite_path}\", 0, 255, 0]" end $gtk.schedule_callback 180 do $gtk.console.eval_the_set_command end $gtk.schedule_callback 190 do $gtk.console.set_command "outputs.sprites << [910, 330, 370, 370, state.sprite_path]" end $gtk.schedule_callback 200 do $gtk.console.eval_the_set_command end $gtk.schedule_callback 300 do $gtk.console.set_command ":wq" end $gtk.schedule_callback 400 do $gtk.console.eval_the_set_command end
Learn Ruby Optional - Beginner Ruby Primer - main.rb
# ./samples/00_learn_ruby_optional/00_beginner_ruby_primer/app/main.rb # ========================================================================== # _ _ ________ __ _ _____ _____ _______ ______ _ _ _ _ _ _ # | | | | ____\ \ / / | | |_ _|/ ____|__ __| ____| \ | | | | | | # | |__| | |__ \ \_/ / | | | | | (___ | | | |__ | \| | | | | | # | __ | __| \ / | | | | \___ \ | | | __| | . ` | | | | | # | | | | |____ | | | |____ _| |_ ____) | | | | |____| |\ |_|_|_|_| # |_| |_|______| |_| |______|_____|_____/ |_| |______|_| \_(_|_|_|_) # # # | # | # | # | # | # | # | # | # | # | # \ | / # \ | / # + # # If you are new to the programming language Ruby, then you may find the # following code a bit overwhelming. This sample is only designed to be # run interactively (as opposed to being manipulated via source code). # # Start up this sample and follow along by visiting: # https://s3.amazonaws.com/s3.dragonruby.org/dragonruby-gtk-primer.mp4 # # It is STRONGLY recommended that you work through all the samples before # looking at the code in this file. # ========================================================================== class TutorialOutputs attr_accessor :solids, :sprites, :labels, :lines, :borders def initialize @solids = [] @sprites = [] @labels = [] @lines = [] @borders = [] end def tick @solids ||= [] @sprites ||= [] @labels ||= [] @lines ||= [] @borders ||= [] @solids.each { |p| $gtk.args.outputs.reserved << p.solid } @sprites.each { |p| $gtk.args.outputs.reserved << p.sprite } @labels.each { |p| $gtk.args.outputs.reserved << p.label } @lines.each { |p| $gtk.args.outputs.reserved << p.line } @borders.each { |p| $gtk.args.outputs.reserved << p.border } end def clear @solids.clear @sprites.clear @labels.clear @borders.clear end end def defaults state.reset_button ||= state.new_entity( :button, label: [1190, 68, "RESTART", -2, 0, 0, 0, 0].label, background: [1160, 38, 120, 50, 255, 255, 255].solid ) $gtk.log_level = :off end def tick_reset_button return unless state.hello_dragonruby_confirmed $gtk.args.outputs.reserved << state.reset_button.background $gtk.args.outputs.reserved << state.reset_button.label if inputs.mouse.click && inputs.mouse.click.point.inside_rect?(state.reset_button.background) restart_tutorial end end def seperator @seperator = "=" * 80 end def tick_intro queue_message "Welcome to the DragonRuby GTK primer! Try typing the code below and press ENTER: puts \"Hello DragonRuby!\" " end def tick_hello_dragonruby return unless console_has? "Hello DragonRuby!" $gtk.args.state.hello_dragonruby_confirmed = true queue_message "Well HELLO to you too! If you ever want to RESTART the tutorial, just click the \"RESTART\" button in the bottom right-hand corner. Let's continue shall we? Type the code below and press ENTER: outputs.solids << [910, 200, 100, 100, 255, 0, 0] " end def tick_explain_solid return unless $tutorial_outputs.solids.any? {|s| s == [910, 200, 100, 100, 255, 0, 0]} queue_message "Sweet! The code: outputs.solids << [910, 200, 100, 100, 255, 0, 0] Does the following: 1. GET the place where SOLIDS go: outputs.solids 2. Request that a new SOLID be ADDED: << 3. The DEFINITION of a SOLID is the ARRAY: [910, 200, 100, 100, 255, 0, 0] GET ADD X Y WIDTH HEIGHT RED GREEN BLUE | | | | | | | | | | | | | | | | | | outputs.solids << [910, 200, 100, 100, 255, 0, 0] |_________________________________________| | | ARRAY Now let's create a blue SOLID. Type: outputs.solids << [1010, 200, 100, 100, 0, 0, 255] " state.explain_solid_confirmed = true end def tick_explain_solid_blue return unless state.explain_solid_confirmed return unless $tutorial_outputs.solids.any? {|s| s == [1010, 200, 100, 100, 0, 0, 255]} state.explain_solid_blue_confirmed = true queue_message "And there is our blue SOLID! The ARRAY is the MOST important thing in DragonRuby GTK. Let's create a SPRITE using an ARRAY: outputs.sprites << [1110, 200, 100, 100, 'sprites/dragon_fly_0.png'] " end def tick_explain_tick_count return unless $tutorial_outputs.sprites.any? {|s| s == [1110, 200, 100, 100, 'sprites/dragon_fly_0.png']} return if $tutorial_outputs.labels.any? {|l| l == [1210, 200, state.tick_count, 255, 255, 255]} state.explain_tick_count_confirmed = true queue_message "Look at the cute little dragon! We can create a LABEL with ARRAYS too. Let's create a LABEL showing THE PASSAGE OF TIME, which is called TICK_COUNT. outputs.labels << [1210, 200, state.tick_count, 0, 255, 0] " end def tick_explain_mod return unless $tutorial_outputs.labels.any? {|l| l == [1210, 200, state.tick_count, 0, 255, 0]} state.explain_mod_confirmed = true queue_message " The code: outputs.labels << [1210, 200, state.tick_count, 0, 255, 0] Does the following: 1. GET the place where labels go: outputs.labels 2. Request that a new label be ADDED: << 3. The DEFINITION of a LABEL is the ARRAY: [1210, 200, state.tick_count, 0, 255, 0] GET ADD X Y TEXT RED GREEN BLUE | | | | | | | | | | | | | | | | outputs.labels << [1210, 200, state.tick_count, 0, 255, 0] |______________________________________________| | | ARRAY Now let's do some MATH, save the result to STATE, and create a LABEL: state.sprite_frame = state.tick_count.idiv(4).mod(6) outputs.labels << [1210, 170, state.sprite_frame, 0, 255, 0] Type the lines above (pressing ENTER after each line). " end def tick_explain_string_interpolation return unless state.explain_mod_confirmed return unless state.sprite_frame == state.tick_count.idiv(4).mod(6) return unless $tutorial_outputs.labels.any? {|l| l == [1210, 170, state.sprite_frame, 0, 255, 0]} queue_message "Here is what the mathematical computation you just typed does: 1. Create an item of STATE named SPRITE_FRAME: state.sprite_frame = 2. Set this SPRITE_FRAME to the PASSAGE OF TIME (tick_count), DIVIDED EVENLY (idiv) into 4, and then compute the REMAINDER (mod) of 6. STATE SPRITE_FRAME PASSAGE OF HOW LONG HOW MANY | | TIME TO SHOW IMAGES | | | AN IMAGE TO FLIP THROUGH | | | | | state.sprite_frame = state.tick_count.idiv(4).mod(6) | | | +- REMAINDER OF DIVIDE DIVIDE EVENLY (NO DECIMALS) With the information above, we can animate a SPRITE using STRING INTERPOLATION: \#{} which creates a unique SPRITE_PATH: state.sprite_path = \"sprites/dragon_fly_\#{state.sprite_frame}.png\" outputs.labels << [910, 330, \"path: \#{state.sprite_path}\", 0, 255, 0] outputs.sprites << [910, 330, 370, 370, state.sprite_path] Type the lines above (pressing ENTER after each line). " end def tick_reprint_on_error return unless console.last_command_errored puts $gtk.state.messages.last puts "\nWhoops! Try again." console.last_command_errored = false end def tick_evals state.evals ||= [] if console.last_command && (console.last_command.start_with?("outputs.") || console.last_command.start_with?("state.")) state.evals << console.last_command console.last_command = nil end state.evals.each do |l| Kernel.eval l end rescue Exception => e state.evals = state.evals[0..-2] end $tutorial_outputs ||= TutorialOutputs.new def tick args $gtk.log_level = :off defaults console.show $tutorial_outputs.clear $tutorial_outputs.solids << [900, 37, 480, 700, 0, 0, 0, 255] $tutorial_outputs.borders << [900, 37, 380, 683, 255, 255, 255] tick_evals $tutorial_outputs.tick tick_intro tick_hello_dragonruby tick_reset_button tick_explain_solid tick_explain_solid_blue tick_reprint_on_error tick_explain_tick_count tick_explain_mod tick_explain_string_interpolation end def console $gtk.console end def queue_message message $gtk.args.state.messages ||= [] return if $gtk.args.state.messages.include? message $gtk.args.state.messages << message last_three = [$gtk.console.log[-3], $gtk.console.log[-2], $gtk.console.log[-1]].reject_nil $gtk.console.log.clear puts seperator $gtk.console.log += last_three puts seperator puts message puts seperator end def console_has? message console.log.map(&:upcase).include? "#{message.upcase}\n" end def restart_tutorial $tutorial_outputs.clear $gtk.console.log.clear $gtk.reset puts "Starting the tutorial over!" end def state $gtk.args.state end def inputs $gtk.args.inputs end def outputs $tutorial_outputs end
Learn Ruby Optional - Intermediate Ruby Primer - printing.txt
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/01_printing.txt # ==================================================================================== # Commenting Code # ==================================================================================== # # Prefixing text with a pound sign (#) is how you comment code in Ruby. Example: # # I am commented code. And so are the lines above. # # I you want more than a quick primer on Ruby, check out https://poignant.guide/. It's # an entertaining read. Otherwise, go to the next txt file. # # Follow along by visiting: # https://s3.amazonaws.com/s3.dragonruby.org/dragonruby-gtk-intermediate.mp4 # ==================================================================================== # Printing to the Console: # ==================================================================================== # # Every time you save repl.rb file, DragonRuby runs the code within it. Copy this text # to repl.rb and save to see Hello World printed to the console. repl do puts '* RUBY PRIMER: Printing to the console using the ~puts~ function.' puts '====' puts '======' puts '================================' puts 'Hello World' puts '================================' puts '======' puts '====' end
Learn Ruby Optional - Intermediate Ruby Primer - strings.txt
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/02_strings.txt # ==================================================================================== # Strings # ==================================================================================== # # Here is how you work with strings in Ruby. Take the text # in this file and paste it into repl.rb and save: repl do puts '* RUBY PRIMER: strings' message = "Hello World" puts "The value of message is: " + message puts "Any value can be interpolated within a string using \#{}." puts "Interpolated message: #{message}." puts 'This #{message} is not interpolated because the string uses single quotes.' end
Learn Ruby Optional - Intermediate Ruby Primer - numbers.txt
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/03_numbers.txt # ==================================================================================== # Numerics # ==================================================================================== # # Here is how you work with numbers in Ruby. Take the text # in this file and paste it into repl.rb and save: repl do puts '* RUBY PRIMER: Fixnum and Floats' a = 10 puts "The value of a is: #{a}" puts "a + 1 is: #{a + 1}" puts "a / 3 is: #{a / 3}" puts '' b = 10.12 puts "The value of b is: #{b}" puts "b + 1 is: #{b + 1}" puts "b as an integer is: #{b.to_i}" puts '' end
Learn Ruby Optional - Intermediate Ruby Primer - booleans.txt
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/04_booleans.txt # ==================================================================================== # Booleans # ==================================================================================== # # Here is how you work with numbers in Ruby. Take the text # in this file and paste it into repl.rb and save: repl do puts '* RUBY PRIMER: TrueClass, FalseClass, NilClass (truthy / falsey values)' puts "Anything that *isn't* false or nil is true." c = 30 puts "The value of c is #{c}." if c puts "This if statement ran because c is truthy." end d = false puts "The value if d is #{d}. The type for d is #{d.class}." if !d puts "This if statement ran because d is falsey, using the not operator (!)." end e = nil puts "Nil is also considered falsey. The value of e is: #{e} (a blank string when printed). Which is of type #{e.class}." if !e puts "This if statement ran because e is nil and the if statement applied the NOT operator. !e yields a type of #{(!e).class}." end end
Learn Ruby Optional - Intermediate Ruby Primer - conditionals.txt
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/05_conditionals.txt # ==================================================================================== # Conditionals # ==================================================================================== # # Here is how you create conditionals in Ruby. Take the text # in this file and paste it into repl.rb and save: repl do puts "* RUBY PRIMER: Conditionals" end # ==================================================================================== # if # ==================================================================================== repl do puts "** INFO: if statement" i_am_one = 1 if i_am_one puts "This was printed because i_am_one is truthy." end end # ==================================================================================== # if/else # ==================================================================================== repl do puts "** INFO: if/else statement" i_am_false = false if i_am_false puts "This will NOT get printed because i_am_false is false." else puts "This was printed because i_am_false is false." end end # ==================================================================================== # if/elsif/else # ==================================================================================== repl do puts "** INFO: if/elsif/else statement" i_am_false = false i_am_true = true if i_am_false puts "This will NOT get printed because i_am_false is false." elsif i_am_true puts "This was printed because i_am_true is true." else puts "This will NOT get printed i_am_true was true." end end # ==================================================================================== # case # ==================================================================================== repl do puts "** INFO case statement" i_am_one = 1 # change this value to see different results case i_am_one when 10 puts "the value of i_am_one is 10" when 9 puts "the value of i_am_one is 9" when 5 puts "the value of i_am_one is 5" when 1 puts "the value of i_am_one is 1" else puts "Value wasn't cased." end end # ==================================================================================== # comparison operators # ==================================================================================== repl do puts "** INFO: Different types of comparisons" if 4 == 4 puts "4 equals 4 (==)" end if 4 != 3 puts "4 does not equal 3 (!=)" end if 3 < 4 puts "3 is less than 4 (<)" end if 4 > 3 puts "4 is greater than 3 (>)" end end # ==================================================================================== # and/or conditionals # ==================================================================================== repl do puts "** INFO: AND, OR operator (&&, ||)" if (4 > 3) || (3 < 4) || false puts "print this if 4 is greater than 3 OR 3 is less than 4 OR false is true (||)" end if (4 > 3) && (3 < 4) puts "print this if 4 is greater than 3 AND 3 is less than 4 (&&)" end end
Learn Ruby Optional - Intermediate Ruby Primer - looping.txt
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/06_looping.txt # ==================================================================================== # Looping # ==================================================================================== # # Looping looks a whole lot different than other languages. # But it's pretty awesome when you get used to it. repl do puts "* RUBY PRIMER: Loops" end # ==================================================================================== # times # ==================================================================================== repl do puts "** INFO: ~Numeric#times~ (for loop)" 3.times do |i| puts i end end # ==================================================================================== # foreach # ==================================================================================== repl do puts "** INFO: ~Array#each~ (for each loop)" array = ["a", "b", "c", "d"] array.each do |char| puts char end puts "** INFO: ~Array#each_with_index~ (for each loop)" array = ["a", "b", "c", "d"] array.each do |char, i| puts "index #{i}: #{char}" end end # ==================================================================================== # ranges # ==================================================================================== repl do puts "** INFO: range block exclusive (three dots)" (0...3).each do |i| puts i end puts "** INFO: range block inclusive (two dots)" (0..3).each do |i| puts i end end
Learn Ruby Optional - Intermediate Ruby Primer - functions.txt
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/07_functions.txt # ==================================================================================== # Functions # ==================================================================================== # The last statement of a function is implictly returned. Parenthesis for functions # are optional as long as the statement can be envaluated disambiguously. repl do puts "* RUBY PRIMER: Functions" end # ==================================================================================== # Functions single parameter # ==================================================================================== repl do puts "* INFO: Function with one parameter" # function definition def add_one_to n n + 1 end # Parenthesis are optional in Ruby as long as the # parsing is disambiguous. Here are a couple of variations. # Generally speaking, don't put parenthesis is you don't have to. # Conventional Usage of Parenthesis. puts add_one_to(3) # DragonRuby's recommended use of parenthesis (inner function has parenthesis). puts (add_one_to 3) # Full parens. puts(add_one_to(3)) # Outer function has parenthesis puts(add_one_to 3) end # ==================================================================================== # Functions with default parameter values # ==================================================================================== repl do puts "* INFO: Function with default value" def function_with_default_value v = 10 v * 10 end puts "Passing the argument three yields: #{function_with_default_value 3}" puts "Passing no argument yields: #{function_with_default_value}" end # ==================================================================================== # Nil default parameter value and ||= operator. # ==================================================================================== repl do puts "* INFO: Using the OR EQUAL operator (||=)" def function_with_nil_default_with_local a = nil result = a result ||= "DEFAULT_VALUE_OF_A_IS_NIL_OR_FALSE" "value is #{result}." end puts "Passing 'hi' as the argument yields: #{function_with_nil_default_with_local 'hi'}" puts "Passing nil: #{function_with_nil_default_with_local}" end
Learn Ruby Optional - Intermediate Ruby Primer - arrays.txt
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/08_arrays.txt # ==================================================================================== # Arrays # ==================================================================================== # Arrays are incredibly powerful in Ruby. Learn to use them well. repl do puts "* RUBY PRIMER: ARRAYS" end # ==================================================================================== # Enumerable ranges and .to_a # ==================================================================================== repl do puts "** INFO: Create an array with the numbers 1 to 10." one_to_ten = (1..10).to_a puts one_to_ten end # ==================================================================================== # Finding elements # ==================================================================================== repl do puts "** INFO: Finding elements in an array using ~Array#find_all~." puts "Create a new array that only contains even numbers from the previous array." one_to_ten = (1..10).to_a evens = one_to_ten.find_all do |number| number % 2 == 0 end puts evens end # ==================================================================================== # Rejecting elements # ==================================================================================== repl do puts "** INFO: Removing elements in an array using ~Array#reject~." puts "Create a new array that rejects odd numbers." one_to_ten = (1..10).to_a also_even = one_to_ten.reject do |number| number % 2 != 0 end puts also_even end # ==================================================================================== # Array transform using the map function. # ==================================================================================== repl do puts "** INFO: Creating new derived values from an array using ~Array#map~." puts "Create an array that doubles every number." one_to_ten = (1..10).to_a doubled = one_to_ten.map do |number| number * 2 end puts doubled end # ==================================================================================== # Combining array functions. # ==================================================================================== repl do puts "** INFO: Combining ~Array#find_all~ along with ~Array#map~." puts "Create an array that selects only odd numbers and then multiply those by 10." one_to_ten = (1..10).to_a odd_doubled = one_to_ten.find_all do |number| number % 2 != 0 end.map do |odd_number| odd_number * 10 end puts odd_doubled end # ==================================================================================== # Product function. # ==================================================================================== repl do puts "** INFO: Create all combinations of array values using ~Array#product~." puts "All two-item pairs of numbers 1 to 10." one_to_ten = (1..10).to_a all_combinations = one_to_ten.product(one_to_ten) puts all_combinations end # ==================================================================================== # Uniq and sort function. # ==================================================================================== repl do puts "** INFO: Providing uniq values using ~Array#uniq~ and ~Array#sort~." puts "All uniq combinations of numbers regardless of order." puts "For example: [1, 2] is the same as [2, 1]." one_to_ten = (1..10).to_a uniq_combinations = one_to_ten.product(one_to_ten) .map do |unsorted_number| unsorted_number.sort end.uniq puts uniq_combinations end # ==================================================================================== # Example of an advanced array transform. # ==================================================================================== repl do puts "** INFO: Advanced chaining. Combining ~Array's ~map~, ~find_all~, ~sort~, and ~sort_by~." puts "All unique Pythagorean Triples between 1 and 100 sorted by area of the triangle." one_to_hundred = (1..100).to_a triples = one_to_hundred.product(one_to_hundred).map do |width, height| [width, height, Math.sqrt(width ** 2 + height ** 2)] end.find_all do |_, _, hypotenuse| hypotenuse.to_i == hypotenuse end.map do |triangle| triangle.map(&:to_i) end.uniq do |triangle| triangle.sort end.map do |width, height, hypotenuse| [width, height, hypotenuse, (width * height) / 2] end.sort_by do |_, _, _, area| area end triples.each do |width, height, hypotenuse, _| puts "(#{width}, #{height}, #{hypotenuse})" end end # ==================================================================================== # Example of an sorting. # ==================================================================================== repl do puts "** INFO: Implementing a custom sort function that operates on the ~Hash~ datatype." things_to_sort = [ { type: :background, order: 1 }, { type: :foreground, order: 1 }, { type: :foreground, order: 2 } ] puts "*** Original array." puts things_to_sort puts "*** Simple sort using key." # For a simple sort, you can use sort_by results = things_to_sort.sort_by do |hash| hash[:order] end puts results puts "*** Custom sort." puts "**** Sorting process." # for a more complicated sort, you can provide a block that returns # -1, 0, 1 for a left and right operand results = things_to_sort.sort do |l, r| sort_result = 0 puts "here is l: #{l}" puts "here is r: #{r || "nil"}" # if either value is nil/false return 0 if !l || !r sort_result = 0 # if the type of "left" is background and the # type of "right" is foreground, then return # -1 (which means "left" is less than "right" elsif l[:type] == :background && r[:type] == :foreground sort_result = -1 # if the type of "left" is foreground and the # type of "right" is background, then return # 1 (which means "left" is greater than "right" elsif l[:type] == :foreground && r[:type] == :background sort_result = 1 # if "left" and "right"'s type are the same, then # use the order as the tie breaker elsif l[:order] < r[:order] sort_result = -1 elsif l[:order] > r[:order] sort_result = 1 # returning 0 means both values are equal else sort_result = 0 end sort_result end.to_a puts "**** Sort result." puts results end # ==================================================================================== # Api documention for Array that is worth commiting to memory because arrays are so # awesome in Ruby: https://docs.ruby-lang.org/en/2.0.0/Array.html # ====================================================================================
Learn Ruby Optional - Intermediate Ruby Primer - main.rb
# ./samples/00_learn_ruby_optional/00_intermediate_ruby_primer/app/main.rb def tick args args.outputs.labels << [640, 380, "Open repl.rb in the text editor of your choice and follow the document.", 0, 1] end
Rendering Basics - Labels - main.rb
# ./samples/01_rendering_basics/01_labels/app/main.rb =begin APIs listing that haven't been encountered in a previous sample apps: - args.outputs.labels: An array. Values in this array generate labels the screen. - args.grid.(left|right|top|bottom): Pixel value for the boundaries of the virtual 720 p screen (Dragon Ruby Game Toolkits's virtual resolution is always 1280x720). - Numeric#shift_(left|right|up|down): Shifts the Numeric in the correct direction by adding or subracting. =end # Labels are used to represent text elements in DragonRuby # An example of creating a label is: # args.outputs.labels << [320, 640, "Example", 3, 1, 255, 0, 0, 200, manaspace.ttf] # The code above does the following: # 1. GET the place where labels go: args.outputs.labels # 2. Request a new LABEL be ADDED: << # 3. The DEFINITION of a SOLID is the ARRAY: # [320, 640, "Example", 3, 1, 255, 0, 0, 200, manaspace.ttf] # [ X , Y, TEXT, SIZE, ALIGN, RED, GREEN, BLUE, ALPHA, FONT STYLE] # The tick method is called by DragonRuby every frame # args contains all the information regarding the game. def tick args tick_instructions args, "Sample app shows different version of label sizes and alignments. And how to use hashes instead of arrays." # Here are some examples of simple labels, with the minimum number of parameters # Note that the default values for the other parameters are 0, except for Alpha which is 255 and Font Style which is the default font args.outputs.labels << [400, 620, "Here is a label with just an x, y, and text"] args.outputs.labels << [args.grid.left.shift_right(5), args.grid.top.shift_down(5), "This is a label located at the top left."] args.outputs.labels << [args.grid.left.shift_right(5), args.grid.bottom.shift_up(30), "This is a label located at the bottom left."] args.outputs.labels << [args.grid.right.shift_left(420), args.grid.top.shift_down(5), "This is a label located at the top right."] args.outputs.labels << [args.grid.right.shift_left(440), args.grid.bottom.shift_up(30), "This is a label located at the bottom right."] # Demonstration of the Size Parameter args.outputs.labels << [175 + 150, 610 - 50, "Smaller label.", -2] args.outputs.labels << [175 + 150, 580 - 50, "Small label.", -1] args.outputs.labels << [175 + 150, 550 - 50, "Medium label.", 0] args.outputs.labels << [175 + 150, 520 - 50, "Large label.", 1] args.outputs.labels << [175 + 150, 490 - 50, "Larger label.", 2] # Demonstration of the Align Parameter args.outputs.labels << [260 + 150, 345 - 50, "Left aligned.", 0, 2] args.outputs.labels << [260 + 150, 325 - 50, "Center aligned.", 0, 1] args.outputs.labels << [260 + 150, 305 - 50, "Right aligned.", 0, 0] # Demonstration of the RGBA parameters args.outputs.labels << [600 + 150, 590 - 50, "Red Label.", 0, 0, 255, 0, 0] args.outputs.labels << [600 + 150, 570 - 50, "Green Label.", 0, 0, 0, 255, 0] args.outputs.labels << [600 + 150, 550 - 50, "Blue Label.", 0, 0, 0, 0, 255] args.outputs.labels << [600 + 150, 530 - 50, "Faded Label.", 0, 0, 0, 0, 0, 128] # Demonstration of the Font parameter # In order to use a font of your choice, add its ttf file to the project folder, where the app folder is args.outputs.labels << [690 + 150, 330 - 20, "Custom font (Array)", 0, 1, 125, 0, 200, 255, "manaspc.ttf" ] args.outputs.primitives << { x: 690 + 150, y: 330 - 50, text: "Custom font (Hash)", size_enum: 0, alignment_enum: 1, r: 125, g: 0, b: 200, a: 255, font: "manaspc.ttf" }.label # Primitives can hold anything, and can be given a label in the following forms args.outputs.primitives << [690 + 150, 330 - 80, "Custom font (.primitives Array)", 0, 1, 125, 0, 200, 255, "manaspc.ttf" ].label args.outputs.primitives << { x: 690 + 150, y: 330 - 110, text: "Custom font (.primitives Hash)", size_enum: 0, alignment_enum: 1, r: 125, g: 0, b: 200, a: 255, font: "manaspc.ttf" }.label end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Rendering Basics - Lines - main.rb
# ./samples/01_rendering_basics/02_lines/app/main.rb =begin APIs listing that haven't been encountered in a previous sample apps: - args.outputs.lines: An array. Values in this array generate lines on the screen. - args.state.tick_count: This property contains an integer value that represents the current frame. GTK renders at 60 FPS. A value of 0 for args.state.tick_count represents the initial load of the game. =end # The parameters required for lines are: # 1. The initial point (x, y) # 2. The end point (x2, y2) # 3. The rgba values for the color and transparency (r, g, b, a) # An example of creating a line would be: # args.outputs.lines << [100, 100, 300, 300, 255, 0, 255, 255] # This would create a line from (100, 100) to (300, 300) # The RGB code (255, 0, 255) would determine its color, a purple # It would have an Alpha value of 255, making it completely opaque def tick args tick_instructions args, "Sample app shows how to create lines." args.outputs.labels << [480, 620, "Lines (x, y, x2, y2, r, g, b, a)"] # Some simple lines args.outputs.lines << [380, 450, 675, 450] args.outputs.lines << [380, 410, 875, 410] # These examples utilize args.state.tick_count to change the length of the lines over time # args.state.tick_count is the ticks that have occurred in the game # This is accomplished by making either the starting or ending point based on the args.state.tick_count args.outputs.lines << [380, 370, 875, 370, args.state.tick_count % 255, 0, 0, 255] args.outputs.lines << [380, 330 - args.state.tick_count % 25, 875, 330, 0, 0, 0, 255] args.outputs.lines << [380 + args.state.tick_count % 400, 290, 875, 290, 0, 0, 0, 255] end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Rendering Basics - Solids Borders - main.rb
# ./samples/01_rendering_basics/03_solids_borders/app/main.rb =begin APIs listing that haven't been encountered in a previous sample apps: - args.outputs.solids: An array. Values in this array generate solid/filled rectangles on the screen. =end # Rects are outputted in DragonRuby as rectangles # If filled in, they are solids # If hollow, they are borders # Solids are added to args.outputs.solids # Borders are added to args.outputs.borders # The parameters required for rects are: # 1. The upper right corner (x, y) # 2. The width (w) # 3. The height (h) # 4. The rgba values for the color and transparency (r, g, b, a) # Here is an example of a rect definition: # [100, 100, 400, 500, 0, 255, 0, 180] # The example would create a rect from (100, 100) # Extending 400 pixels across the x axis # and 500 pixels across the y axis # The rect would be green (0, 255, 0) # and mostly opaque with some transparency (180) # Whether the rect would be filled or not depends on if # it is added to args.outputs.solids or args.outputs.borders def tick args tick_instructions args, "Sample app shows how to create solid squares." args.outputs.labels << [460, 600, "Solids (x, y, w, h, r, g, b, a)"] args.outputs.solids << [470, 520, 50, 50] args.outputs.solids << [530, 520, 50, 50, 0, 0, 0] args.outputs.solids << [590, 520, 50, 50, 255, 0, 0] args.outputs.solids << [650, 520, 50, 50, 255, 0, 0, 128] args.outputs.solids << [710, 520, 50, 50, 0, 0, 0, 128 + args.state.tick_count % 128] args.outputs.labels << [460, 400, "Borders (x, y, w, h, r, g, b, a)"] args.outputs.borders << [470, 320, 50, 50] args.outputs.borders << [530, 320, 50, 50, 0, 0, 0] args.outputs.borders << [590, 320, 50, 50, 255, 0, 0] args.outputs.borders << [650, 320, 50, 50, 255, 0, 0, 128] args.outputs.borders << [710, 320, 50, 50, 0, 0, 0, 128 + args.state.tick_count % 128] end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Rendering Basics - Sprites - main.rb
# ./samples/01_rendering_basics/04_sprites/app/main.rb =begin APIs listing that haven't been encountered in a previous sample apps: - args.outputs.sprites: An array. Values in this array generate sprites on the screen. The location of the sprite is assumed to be under the mygame/ directory (the exception being dragonruby.png). =end # For all other display outputs, Sprites are your solution # Sprites import images and display them with a certain rectangular area # The image can be of any usual format and should be located within the folder, # similar to additional fonts. # Sprites have the following parameters # Rectangular area (x, y, width, height) # The image (path) # Rotation (angle) # Alpha (a) def tick args tick_instructions args, "Sample app shows how to render a sprite. Set its alpha, and rotate it." args.outputs.labels << [460, 600, "Sprites (x, y, w, h, path, angle, a)"] args.outputs.sprites << [460, 470, 128, 101, 'dragonruby.png'] args.outputs.sprites << [610, 470, 128, 101, 'dragonruby.png', args.state.tick_count % 360] args.outputs.sprites << [760, 470, 128, 101, 'dragonruby.png', 0, args.state.tick_count % 255] end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Rendering Basics - Sounds - main.rb
# ./samples/01_rendering_basics/05_sounds/app/main.rb =begin APIs Listing that haven't been encountered in previous sample apps: - sample: Chooses random element from array. In this sample app, the target note is set by taking a sample from the collection of available notes. Reminders: - args.grid.(left|right|top|bottom): Pixel value for the boundaries of the virtual 720 p screen (Dragon Ruby Game Toolkits's virtual resolution is always 1280x720). - args.state.new_entity: Used when we want to create a new object, like a sprite or button. For example, if we want to create a new button, we would declare it as a new entity and then define its properties. - String interpolation: Uses #{} syntax; everything between the #{ and the } is evaluated as Ruby code, and the placeholder is replaced with its corresponding value or result. - args.outputs.labels: An array. The values generate a label. The parameters are [X, Y, TEXT, SIZE, ALIGNMENT, RED, GREEN, BLUE, ALPHA, FONT STYLE] For more information about labels, go to mygame/documentation/02-labels.md. - reject: Removes elements from a collection if they meet certain requirements. - first: Returns the first element of an array. - inside_rect: Returns true or false depending on if the point is inside the rect. - to_sym: Returns symbol corresponding to string. Will create a symbol if it does not already exist. =end # This sample app allows users to test their musical skills by matching the piano sound that plays in each # level to the correct note. # Runs all the methods necessary for the game to function properly. def tick args defaults args render args calc args input_mouse args tick_instructions args, "Sample app shows how to play sounds. args.outputs.sounds << \"path_to_wav.wav\"" end # Sets default values and creates empty collections # Initialization happens in the first frame only def defaults _ _.state.notes ||= [] _.state.click_feedbacks ||= [] _.state.current_level ||= 1 _.state.times_wrong ||= 0 # when game starts, user hasn't guessed wrong yet end # Uses a label to display current level, and shows the score # Creates a button to play the sample note, and displays the available notes that could be a potential match def render _ # grid.w_half positions the label in the horizontal center of the screen. _.outputs.labels << [_.grid.w_half, _.grid.top.shift_down(40), "Hole #{_.state.current_level} of 9", 0, 1, 0, 0, 0] render_score _ # shows score on screen if _.state.game_over # if game is over, a "play again" button is shown # Calculations ensure that Play Again label is displayed in center of border # Remove calculations from y parameters and see what happens to border and label placement _.state.play_again_border ||= _.state.with_meta([560, _.grid.h * 3 / 4 - 40, 160, 60], 'again') # array definition, text/title _.outputs.labels << [_.grid.w_half, _.grid.h * 3 / 4, "Play Again", 0, 1, 0, 0, 0] # outputs label _.outputs.borders << _.state.play_again_border # outputs border else # otherwise, if game is not over # Calculations ensure that label appears in center of border _.state.play_note_border ||= _.state.with_meta([560, _.grid.h * 3 / 4 - 40, 160, 60], 'play') # array definition, text/title _.outputs.labels << [_.grid.w_half, _.grid.h * 3 / 4, "Play Note ##{_.state.current_level}", 0, 1, 0, 0, 0] # outputs label _.outputs.borders << _.state.play_note_border # outputs border end return if _.state.game_over # return if game is over _.outputs.labels << [_.grid.w_half, 400, "I think the note is a(n)...", 0, 1, 0, 0, 0] # outputs label # Shows all of the available notes that can be potential matches. available_notes.each_with_index do |note, i| _.state.notes[i] ||= piano_button(_, note, i + 1) # calls piano_button method on each note (creates label and border) _.outputs.labels << _.state.notes[i].label # outputs note on screen with a label and a border _.outputs.borders << _.state.notes[i].border end # Shows whether or not the user is correct by filling the screen with either red or green _.outputs.solids << _.state.click_feedbacks.map { |c| c.solid } end # Shows the score (number of times the user guesses wrong) onto the screen using labels. def render_score _ if _.state.times_wrong == 0 # if the user has guessed wrong zero times, the score is par _.outputs.labels << [_.grid.w_half, _.grid.top.shift_down(80), "Score: PAR", 0, 1, 0, 0, 0] else # otherwise, number of times the user has guessed wrong is shown _.outputs.labels << [_.grid.w_half, _.grid.top.shift_down(80), "Score: +#{_.state.times_wrong}", 0, 1, 0, 0, 0] # shows score using string interpolation end end # Sets the target note for the level and performs calculations on click_feedbacks. def calc _ _.state.target_note ||= available_notes.sample # chooses a note from available_notes collection as target note _.state.click_feedbacks.each { |c| c.solid[-1] -= 5 } # remove this line and solid color will remain on screen indefinitely # comment this line out and the solid color will keep flashing on screen instead of being removed from click_feedbacks collection _.state.click_feedbacks.reject! { |c| c.solid[-1] <= 0 } end # Uses input from the user to play the target note, as well as the other notes that could be a potential match. def input_mouse _ return unless _.inputs.mouse.click # return unless the mouse is clicked # finds button that was clicked by user button_clicked = _.outputs.borders.find_all do |b| # go through borders collection to find all borders that meet requirements _.inputs.mouse.click.point.inside_rect? b # find button border that mouse was clicked inside of end.reject {|b| !_.state.meta(b)}.first # reject, return first element return unless button_clicked # return unless button_clicked as a value (a button was clicked) queue_click_feedback _, # calls queue_click_feedback method on the button that was clicked button_clicked.x, button_clicked.y, button_clicked.w, button_clicked.h, 150, 100, 200 # sets color of button to shade of purple if _.state.meta(button_clicked) == 'play' # if "play note" button is pressed _.outputs.sounds << "sounds/#{_.state.target_note}.wav" # sound of target note is output elsif _.state.meta(button_clicked) == 'again' # if "play game again" button is pressed _.state.target_note = nil # no target note _.state.current_level = 1 # starts at level 1 again _.state.times_wrong = 0 # starts off with 0 wrong guesses _.state.game_over = false # the game is not over (because it has just been restarted) else # otherwise if neither of those buttons were pressed _.outputs.sounds << "sounds/#{_.state.meta(button_clicked)}.wav" # sound of clicked note is played if _.state.meta(button_clicked).to_sym == _.state.target_note # if clicked note is target note _.state.target_note = nil # target note is emptied if _.state.current_level < 9 # if game hasn't reached level 9 _.state.current_level += 1 # game goes to next level else # otherwise, if game has reached level 9 _.state.game_over = true # the game is over end queue_click_feedback _, 0, 0, _.grid.w, _.grid.h, 100, 200, 100 # green shown if user guesses correctly else # otherwise, if clicked note is not target note _.state.times_wrong += 1 # increments times user guessed wrong queue_click_feedback _, 0, 0, _.grid.w, _.grid.h, 200, 100, 100 # red shown is user guesses wrong end end end # Creates a collection of all of the available notes as symbols def available_notes [:C3, :D3, :E3, :F3, :G3, :A3, :B3, :C4] end # Creates buttons for each note, and sets a label (the note's name) and border for each note's button. def piano_button _, note, position _.state.new_entity(:button) do |b| # declares button as new entity b.label = [460 + 40.mult(position), _.grid.h * 0.4, "#{note}", 0, 1, 0, 0, 0] # label definition b.border = _.state.with_meta([460 + 40.mult(position) - 20, _.grid.h * 0.4 - 32, 40, 40], note) # border definition, text/title; 20 subtracted so label is in center of border end end # Color of click feedback changes depending on what button was clicked, and whether the guess is right or wrong # If a button is clicked, the inside of button is purple (see input_mouse method) # If correct note is clicked, screen turns green # If incorrect note is clicked, screen turns red (again, see input_mouse method) def queue_click_feedback _, x, y, w, h, *color _.state.click_feedbacks << _.state.new_entity(:click_feedback) do |c| # declares feedback as new entity c.solid = [x, y, w, h, *color, 255] # sets color end end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Rendering Basics - Audio Mixer - main.rb
# ./samples/01_rendering_basics/06_audio_mixer/app/main.rb $gtk.reset $boxsize = 30 def render_sources args mouse_in_panel = (args.state.selected != 0) && args.inputs.mouse.position.inside_rect?([900, 450, 340, 250]) mouse_new_down = (args.state.mouse_held == 1) if (mouse_new_down && !mouse_in_panel) args.state.selected = 0 # will reset below if we hit something. end args.audio.keys.each { |k| s = args.audio[k] if (mouse_new_down) && !mouse_in_panel && args.inputs.mouse.position.inside_rect?([s[:screenx], s[:screeny], $boxsize, $boxsize]) args.state.selected = k args.state.dragging_source = true end isselected = (k == args.state.selected) if isselected && args.state.dragging_source # you can hang anything on the audio hashes you want, so we store the # actual screen position so it doesn't scale weirdly vs your mouse. s[:screenx] = args.inputs.mouse.x - ($boxsize / 2) s[:screeny] = args.inputs.mouse.y - ($boxsize / 2) s[:screeny] = 50 if s[:screeny] < 50 s[:screeny] = (719 - $boxsize) if s[:screeny] > (719 - $boxsize) s[:screenx] = 0 if s[:screenx] < 0 s[:screenx] = (1279 - $boxsize) if s[:screenx] > (1279 - $boxsize) s[:x] = ((s[:screenx] / 1279.0) * 2.0) - 1.0 # scale to -1.0 - 1.0 range s[:y] = ((s[:screeny] / 719.0) * 2.0) - 1.0 # scale to -1.0 - 1.0 range end color = isselected ? [ 0, 255, 0, 255 ] : [ 0, 0, 255, 255 ] args.outputs.primitives << [s[:screenx], s[:screeny], $boxsize, $boxsize, *color].solid } end def render_panel args s = args.audio[args.state.selected] return if s.nil? mouse_down = (args.state.mouse_held > 0) args.outputs.primitives << [900, 450, 340, 250, 127, 127, 200, 255].solid args.outputs.primitives << [1075, 690, "Source ##{args.state.selected}", 3, 1, 255, 255, 255].label args.outputs.primitives << [910, 660, 1230, 660, 255, 255, 255].line args.outputs.primitives << [910, 650, "screen: (#{s[:screenx].to_i}, #{s[:screeny].to_i})", 0, 0, 255, 255, 255].label args.outputs.primitives << [910, 625, "position: (#{s[:x].round(5).to_s[0..6]}, #{s[:y].round(5).to_s[0..6]})", 0, 0, 255, 255, 255].label slider = [1022, 586, 200, 7] if mouse_down && args.inputs.mouse.position.inside_rect?(slider) s[:pitch] = ((args.inputs.mouse.x - slider[0]).to_f / (slider[2]-1.0)) * 2.0 end slidercolor = (s[:pitch] / 2.0) * 255 args.outputs.primitives << [*slider, slidercolor, slidercolor, slidercolor, 255].solid args.outputs.primitives << [910, 600, "pitch: #{s[:pitch].round(3).to_s[0..2]}", 0, 0, 255, 255, 255].label slider = [1022, 561, 200, 7] if mouse_down && args.inputs.mouse.position.inside_rect?(slider) s[:gain] = (args.inputs.mouse.x - slider[0]).to_f / (slider[2]-1.0) end slidercolor = s[:gain] * 255 args.outputs.primitives << [*slider, slidercolor, slidercolor, slidercolor, 255].solid args.outputs.primitives << [910, 575, "gain: #{s[:gain].round(3).to_s[0..2]}", 0, 0, 255, 255, 255].label checkbox = [1022, 533, 10, 12] if (args.state.mouse_held == 1) && args.inputs.mouse.position.inside_rect?(checkbox) s[:looping] = !s[:looping] end checkboxcolor = s[:looping] ? 255 : 0 args.outputs.primitives << [*checkbox, checkboxcolor, checkboxcolor, checkboxcolor, 255].solid args.outputs.primitives << [910, 550, "looping:", 0, 0, 255, 255, 255].label checkbox = [1022, 508, 10, 12] if (args.state.mouse_held == 1) && args.inputs.mouse.position.inside_rect?(checkbox) s[:paused] = !s[:paused] end checkboxcolor = s[:paused] ? 255 : 0 args.outputs.primitives << [*checkbox, checkboxcolor, checkboxcolor, checkboxcolor, 255].solid args.outputs.primitives << [910, 525, "paused:", 0, 0, 255, 255, 255].label button = [910, 460, 320, 20] if (args.state.mouse_held == 1) && args.inputs.mouse.position.inside_rect?(button) args.audio.delete(args.state.selected) args.state.selected = 0 end args.outputs.primitives << [*button, 255, 0, 0, 255].solid args.outputs.primitives << [button[0] + (button[2] / 2), button[1]+20, "DELETE SOURCE", 0, 1, 255, 255, 0].label end def spawn_new_sound args, num input = nil input = "sounds/#{num}.#{(num == 6) ? 'ogg' : 'wav'}" # Spawn randomly in an area that won't be covered by UI. screenx = (rand * 600.0) + 200.0 screeny = (rand * 400.0) + 100.0 args.state.next_sound_index += 1 # you can hang anything on the audio hashes you want, so we store the # actual screen position in here for convenience. args.audio[args.state.next_sound_index] = { input: input, screenx: screenx, screeny: screeny, x: ((screenx / 1279.0) * 2.0) - 1.0, # scale to -1.0 - 1.0 range y: ((screeny / 719.0) * 2.0) - 1.0, # scale to -1.0 - 1.0 range z: 0.0, gain: 1.0, pitch: 1.0, looping: true, paused: false } args.state.selected = args.state.next_sound_index end def render_launcher args total = 6 x = (1280 - (total * $boxsize * 3)) / 2 y = 10 args.outputs.primitives << [0, 0, 1280, ((y*2) + $boxsize), 127, 127, 127, 255].solid for i in 1..total args.outputs.primitives << [x, y, $boxsize, $boxsize, 255, 255, 255, 255].solid args.outputs.primitives << [x+8, y+28, i.to_s, 3, 0, 0, 0, 255, 255].label if args.inputs.mouse.click && args.inputs.mouse.click.point.inside_rect?([x, y, $boxsize, $boxsize]) spawn_new_sound args, i end x = x + ($boxsize * 3) end end def render_ui args render_launcher args render_panel args end def tick args args.state.mouse_held ||= 0 args.state.dragging_source ||= false args.state.selected ||= 0 args.state.next_sound_index ||= 0 if args.inputs.mouse.up args.state.mouse_held = 0 args.state.dragging_source = false elsif args.inputs.mouse.down || (args.state.mouse_held > 0) args.state.mouse_held += 1 else end args.outputs.background_color = [ 0, 0, 0, 255 ] render_sources args render_ui args end
Rendering Basics - Sound Synthesis - main.rb
# ./samples/01_rendering_basics/07_sound_synthesis/app/main.rb begin # region: top level tick methods def tick args defaults args render args input args process_audio_queue args end def defaults args args.state.sine_waves ||= {} args.state.square_waves ||= {} args.state.saw_tooth_waves ||= {} args.state.triangle_waves ||= {} args.state.audio_queue ||= [] args.state.buttons ||= [ (frequency_buttons args), (sine_wave_note_buttons args), (bell_buttons args), (square_wave_note_buttons args), (saw_tooth_wave_note_buttons args), (triangle_wave_note_buttons args), ].flatten end def render args args.outputs.borders << args.state.buttons.map { |b| b[:border] } args.outputs.labels << args.state.buttons.map { |b| b[:label] } args.outputs.labels << args.layout .rect(row: 0, col: 11.5) .yield_self { |r| r.merge y: r.y + r.h } .merge(text: "This is a Pro only feature. Click here to watch the YouTube video if you are on the Standard License.", alignment_enum: 1) end def input args args.state.buttons.each do |b| if args.inputs.mouse.click.inside_rect? b[:rect] parameter_string = (b.slice :frequency, :note, :octave).map { |k, v| "#{k}: #{v}" }.join ", " args.gtk.notify! "#{b[:method_to_call]} #{parameter_string}" send b[:method_to_call], args, b end end if args.inputs.mouse.click.inside_rect? (args.layout.rect(row: 0).yield_self { |r| r.merge y: r.y + r.h.half, h: r.h.half }) args.gtk.openurl 'https://www.youtube.com/watch?v=zEzovM5jT-k&ab_channel=AmirRajan' end end def process_audio_queue args to_queue = args.state.audio_queue.find_all { |v| v[:queue_at] <= args.tick_count } args.state.audio_queue -= to_queue to_queue.each { |a| args.audio[a[:id]] = a } args.audio.find_all { |k, v| v[:decay_rate] } .each { |k, v| v[:gain] -= v[:decay_rate] } sounds_to_stop = args.audio .find_all { |k, v| v[:stop_at] && args.state.tick_count >= v[:stop_at] } .map { |k, v| k } sounds_to_stop.each { |k| args.audio.delete k } end end begin # region: button definitions, ui layout, callback functions def button args, opts button_def = opts.merge rect: (args.layout.rect (opts.merge w: 2, h: 1)) button_def[:border] = button_def[:rect].merge r: 0, g: 0, b: 0 label_offset_x = 5 label_offset_y = 30 button_def[:label] = button_def[:rect].merge text: opts[:text], size_enum: -2.5, x: button_def[:rect].x + label_offset_x, y: button_def[:rect].y + label_offset_y button_def end def play_sine_wave args, sender queue_sine_wave args, frequency: sender[:frequency], duration: 1.seconds, fade_out: true end def play_note args, sender method_to_call = :queue_sine_wave method_to_call = :queue_square_wave if sender[:type] == :square method_to_call = :queue_saw_tooth_wave if sender[:type] == :saw_tooth method_to_call = :queue_triangle_wave if sender[:type] == :triangle method_to_call = :queue_bell if sender[:type] == :bell send method_to_call, args, frequency: (frequency_for note: sender[:note], octave: sender[:octave]), duration: 1.seconds, fade_out: true end def frequency_buttons args [ (button args, row: 4.0, col: 0, text: "300hz", frequency: 300, method_to_call: :play_sine_wave), (button args, row: 5.0, col: 0, text: "400hz", frequency: 400, method_to_call: :play_sine_wave), (button args, row: 6.0, col: 0, text: "500hz", frequency: 500, method_to_call: :play_sine_wave), ] end def sine_wave_note_buttons args [ (button args, row: 1.5, col: 2, text: "Sine C4", note: :c, octave: 4, type: :sine, method_to_call: :play_note), (button args, row: 2.5, col: 2, text: "Sine D4", note: :d, octave: 4, type: :sine, method_to_call: :play_note), (button args, row: 3.5, col: 2, text: "Sine E4", note: :e, octave: 4, type: :sine, method_to_call: :play_note), (button args, row: 4.5, col: 2, text: "Sine F4", note: :f, octave: 4, type: :sine, method_to_call: :play_note), (button args, row: 5.5, col: 2, text: "Sine G4", note: :g, octave: 4, type: :sine, method_to_call: :play_note), (button args, row: 6.5, col: 2, text: "Sine A5", note: :a, octave: 5, type: :sine, method_to_call: :play_note), (button args, row: 7.5, col: 2, text: "Sine B5", note: :b, octave: 5, type: :sine, method_to_call: :play_note), (button args, row: 8.5, col: 2, text: "Sine C5", note: :c, octave: 5, type: :sine, method_to_call: :play_note), ] end def square_wave_note_buttons args [ (button args, row: 1.5, col: 6, text: "Square C4", note: :c, octave: 4, type: :square, method_to_call: :play_note), (button args, row: 2.5, col: 6, text: "Square D4", note: :d, octave: 4, type: :square, method_to_call: :play_note), (button args, row: 3.5, col: 6, text: "Square E4", note: :e, octave: 4, type: :square, method_to_call: :play_note), (button args, row: 4.5, col: 6, text: "Square F4", note: :f, octave: 4, type: :square, method_to_call: :play_note), (button args, row: 5.5, col: 6, text: "Square G4", note: :g, octave: 4, type: :square, method_to_call: :play_note), (button args, row: 6.5, col: 6, text: "Square A5", note: :a, octave: 5, type: :square, method_to_call: :play_note), (button args, row: 7.5, col: 6, text: "Square B5", note: :b, octave: 5, type: :square, method_to_call: :play_note), (button args, row: 8.5, col: 6, text: "Square C5", note: :c, octave: 5, type: :square, method_to_call: :play_note), ] end def saw_tooth_wave_note_buttons args [ (button args, row: 1.5, col: 8, text: "Saw C4", note: :c, octave: 4, type: :saw_tooth, method_to_call: :play_note), (button args, row: 2.5, col: 8, text: "Saw D4", note: :d, octave: 4, type: :saw_tooth, method_to_call: :play_note), (button args, row: 3.5, col: 8, text: "Saw E4", note: :e, octave: 4, type: :saw_tooth, method_to_call: :play_note), (button args, row: 4.5, col: 8, text: "Saw F4", note: :f, octave: 4, type: :saw_tooth, method_to_call: :play_note), (button args, row: 5.5, col: 8, text: "Saw G4", note: :g, octave: 4, type: :saw_tooth, method_to_call: :play_note), (button args, row: 6.5, col: 8, text: "Saw A5", note: :a, octave: 5, type: :saw_tooth, method_to_call: :play_note), (button args, row: 7.5, col: 8, text: "Saw B5", note: :b, octave: 5, type: :saw_tooth, method_to_call: :play_note), (button args, row: 8.5, col: 8, text: "Saw C5", note: :c, octave: 5, type: :saw_tooth, method_to_call: :play_note), ] end def triangle_wave_note_buttons args [ (button args, row: 1.5, col: 10, text: "Triangle C4", note: :c, octave: 4, type: :triangle, method_to_call: :play_note), (button args, row: 2.5, col: 10, text: "Triangle D4", note: :d, octave: 4, type: :triangle, method_to_call: :play_note), (button args, row: 3.5, col: 10, text: "Triangle E4", note: :e, octave: 4, type: :triangle, method_to_call: :play_note), (button args, row: 4.5, col: 10, text: "Triangle F4", note: :f, octave: 4, type: :triangle, method_to_call: :play_note), (button args, row: 5.5, col: 10, text: "Triangle G4", note: :g, octave: 4, type: :triangle, method_to_call: :play_note), (button args, row: 6.5, col: 10, text: "Triangle A5", note: :a, octave: 5, type: :triangle, method_to_call: :play_note), (button args, row: 7.5, col: 10, text: "Triangle B5", note: :b, octave: 5, type: :triangle, method_to_call: :play_note), (button args, row: 8.5, col: 10, text: "Triangle C5", note: :c, octave: 5, type: :triangle, method_to_call: :play_note), ] end def bell_buttons args [ (button args, row: 1.5, col: 4, text: "Bell C4", note: :c, octave: 4, type: :bell, method_to_call: :play_note), (button args, row: 2.5, col: 4, text: "Bell D4", note: :d, octave: 4, type: :bell, method_to_call: :play_note), (button args, row: 3.5, col: 4, text: "Bell E4", note: :e, octave: 4, type: :bell, method_to_call: :play_note), (button args, row: 4.5, col: 4, text: "Bell F4", note: :f, octave: 4, type: :bell, method_to_call: :play_note), (button args, row: 5.5, col: 4, text: "Bell G4", note: :g, octave: 4, type: :bell, method_to_call: :play_note), (button args, row: 6.5, col: 4, text: "Bell A5", note: :a, octave: 5, type: :bell, method_to_call: :play_note), (button args, row: 7.5, col: 4, text: "Bell B5", note: :b, octave: 5, type: :bell, method_to_call: :play_note), (button args, row: 8.5, col: 4, text: "Bell C5", note: :c, octave: 5, type: :bell, method_to_call: :play_note), ] end end begin # region: wave generation begin # sine wave def defaults_sine_wave_for { frequency: 440, sample_rate: 48000 } end def sine_wave_for opts = {} opts = defaults_sine_wave_for.merge opts frequency = opts[:frequency] sample_rate = opts[:sample_rate] period_size = (sample_rate.fdiv frequency).ceil period_size.map_with_index do |i| Math::sin((2.0 * Math::PI) / (sample_rate.to_f / frequency.to_f) * i) end.to_a end def defaults_queue_sine_wave { frequency: 440, duration: 60, gain: 1.0, fade_out: false, queue_in: 0 } end def queue_sine_wave args, opts = {} opts = defaults_queue_sine_wave.merge opts frequency = opts[:frequency] sample_rate = 48000 sine_wave = sine_wave_for frequency: frequency, sample_rate: sample_rate args.state.sine_waves[frequency] ||= sine_wave_for frequency: frequency, sample_rate: sample_rate proc = lambda do generate_audio_data args.state.sine_waves[frequency], sample_rate end audio_state = new_audio_state args, opts audio_state[:input] = [1, sample_rate, proc] queue_audio args, audio_state: audio_state, wave: sine_wave end end begin # region: square wave def defaults_square_wave_for { frequency: 440, sample_rate: 48000 } end def square_wave_for opts = {} opts = defaults_square_wave_for.merge opts sine_wave = sine_wave_for opts sine_wave.map do |v| if v >= 0 1.0 else -1.0 end end.to_a end def defaults_queue_square_wave { frequency: 440, duration: 60, gain: 0.3, fade_out: false, queue_in: 0 } end def queue_square_wave args, opts = {} opts = defaults_queue_square_wave.merge opts frequency = opts[:frequency] sample_rate = 48000 square_wave = square_wave_for frequency: frequency, sample_rate: sample_rate args.state.square_waves[frequency] ||= square_wave_for frequency: frequency, sample_rate: sample_rate proc = lambda do generate_audio_data args.state.square_waves[frequency], sample_rate end audio_state = new_audio_state args, opts audio_state[:input] = [1, sample_rate, proc] queue_audio args, audio_state: audio_state, wave: square_wave end end begin # region: saw tooth wave def defaults_saw_tooth_wave_for { frequency: 440, sample_rate: 48000 } end def saw_tooth_wave_for opts = {} opts = defaults_saw_tooth_wave_for.merge opts sine_wave = sine_wave_for opts period_size = sine_wave.length sine_wave.map_with_index do |v, i| (((i % period_size).fdiv period_size) * 2) - 1 end end def defaults_queue_saw_tooth_wave { frequency: 440, duration: 60, gain: 0.3, fade_out: false, queue_in: 0 } end def queue_saw_tooth_wave args, opts = {} opts = defaults_queue_saw_tooth_wave.merge opts frequency = opts[:frequency] sample_rate = 48000 saw_tooth_wave = saw_tooth_wave_for frequency: frequency, sample_rate: sample_rate args.state.saw_tooth_waves[frequency] ||= saw_tooth_wave_for frequency: frequency, sample_rate: sample_rate proc = lambda do generate_audio_data args.state.saw_tooth_waves[frequency], sample_rate end audio_state = new_audio_state args, opts audio_state[:input] = [1, sample_rate, proc] queue_audio args, audio_state: audio_state, wave: saw_tooth_wave end end begin # region: triangle wave def defaults_triangle_wave_for { frequency: 440, sample_rate: 48000 } end def triangle_wave_for opts = {} opts = defaults_saw_tooth_wave_for.merge opts sine_wave = sine_wave_for opts period_size = sine_wave.length sine_wave.map_with_index do |v, i| ratio = (i.fdiv period_size) if ratio <= 0.5 (ratio * 4) - 1 else ratio -= 0.5 1 - (ratio * 4) end end end def defaults_queue_triangle_wave { frequency: 440, duration: 60, gain: 1.0, fade_out: false, queue_in: 0 } end def queue_triangle_wave args, opts = {} opts = defaults_queue_triangle_wave.merge opts frequency = opts[:frequency] sample_rate = 48000 triangle_wave = triangle_wave_for frequency: frequency, sample_rate: sample_rate args.state.triangle_waves[frequency] ||= triangle_wave_for frequency: frequency, sample_rate: sample_rate proc = lambda do generate_audio_data args.state.triangle_waves[frequency], sample_rate end audio_state = new_audio_state args, opts audio_state[:input] = [1, sample_rate, proc] queue_audio args, audio_state: audio_state, wave: triangle_wave end end begin # region: bell def defaults_queue_bell { frequency: 440, duration: 1.seconds, queue_in: 0 } end def queue_bell args, opts = {} (bell_to_sine_waves (defaults_queue_bell.merge opts)).each { |b| queue_sine_wave args, b } end def bell_harmonics [ { frequency_ratio: 0.5, duration_ratio: 1.00 }, { frequency_ratio: 1.0, duration_ratio: 0.80 }, { frequency_ratio: 2.0, duration_ratio: 0.60 }, { frequency_ratio: 3.0, duration_ratio: 0.40 }, { frequency_ratio: 4.2, duration_ratio: 0.25 }, { frequency_ratio: 5.4, duration_ratio: 0.20 }, { frequency_ratio: 6.8, duration_ratio: 0.15 } ] end def defaults_bell_to_sine_waves { frequency: 440, duration: 1.seconds, queue_in: 0 } end def bell_to_sine_waves opts = {} opts = defaults_bell_to_sine_waves.merge opts bell_harmonics.map do |b| { frequency: opts[:frequency] * b[:frequency_ratio], duration: opts[:duration] * b[:duration_ratio], queue_in: opts[:queue_in], gain: (1.fdiv bell_harmonics.length), fade_out: true } end end end begin # audio entity construction def generate_audio_data sine_wave, sample_rate sample_size = (sample_rate.fdiv (1000.fdiv 60)).ceil copy_count = (sample_size.fdiv sine_wave.length).ceil sine_wave * copy_count end def defaults_new_audio_state { frequency: 440, duration: 60, gain: 1.0, fade_out: false, queue_in: 0 } end def new_audio_state args, opts = {} opts = defaults_new_audio_state.merge opts decay_rate = 0 decay_rate = 1.fdiv(opts[:duration]) * opts[:gain] if opts[:fade_out] frequency = opts[:frequency] sample_rate = 48000 { id: (new_id! args), frequency: frequency, sample_rate: 48000, stop_at: args.tick_count + opts[:queue_in] + opts[:duration], gain: opts[:gain].to_f, queue_at: args.state.tick_count + opts[:queue_in], decay_rate: decay_rate, pitch: 1.0, looping: true, paused: false } end def queue_audio args, opts = {} graph_wave args, opts[:wave], opts[:audio_state][:frequency] args.state.audio_queue << opts[:audio_state] end def new_id! args args.state.audio_id ||= 0 args.state.audio_id += 1 end def graph_wave args, wave, frequency if args.state.tick_count != args.state.graphed_at args.outputs.static_lines.clear args.outputs.static_sprites.clear end wave = wave r, g, b = frequency.to_i % 85, frequency.to_i % 170, frequency.to_i % 255 starting_rect = args.layout.rect(row: 5, col: 13) x_scale = 10 y_scale = 100 max_points = 25 points = wave if wave.length > max_points resolution = wave.length.idiv max_points points = wave.find_all.with_index { |y, i| (i % resolution == 0) } end args.outputs.static_lines << points.map_with_index do |y, x| next_y = points[x + 1] if next_y { x: starting_rect.x + (x * x_scale), y: starting_rect.y + starting_rect.h.half + y_scale * y, x2: starting_rect.x + ((x + 1) * x_scale), y2: starting_rect.y + starting_rect.h.half + y_scale * next_y, r: r, g: g, b: b } end end args.outputs.static_sprites << points.map_with_index do |y, x| { x: (starting_rect.x + (x * x_scale)) - 2, y: (starting_rect.y + starting_rect.h.half + y_scale * y) - 2, w: 4, h: 4, path: 'sprites/square-white.png', r: r, g: g, b: b } end args.state.graphed_at = args.state.tick_count end end begin # region: musical note mapping def defaults_frequency_for { note: :a, octave: 5, sharp: false, flat: false } end def frequency_for opts = {} opts = defaults_frequency_for.merge opts octave_offset_multiplier = opts[:octave] - 5 note = note_frequencies_octave_5[opts[:note]] if octave_offset_multiplier < 0 note = note * 1 / (octave_offset_multiplier.abs + 1) elsif octave_offset_multiplier > 0 note = note * (octave_offset_multiplier.abs + 1) / 1 end note end def note_frequencies_octave_5 { a: 440.0, a_sharp: 466.16, b_flat: 466.16, b: 493.88, c: 523.25, c_sharp: 554.37, d_flat: 587.33, d: 587.33, d_sharp: 622.25, e_flat: 659.25, e: 659.25, f: 698.25, f_sharp: 739.99, g_flat: 739.99, g: 783.99, g_sharp: 830.61, a_flat: 830.61 } end end end $gtk.reset
Input Basics - Keyboard - main.rb
# ./samples/02_input_basics/01_keyboard/app/main.rb =begin APIs listing that haven't been encountered in a previous sample apps: - args.inputs.keyboard.key_up.KEY: The value of the properties will be set to the frame that the key_up event occurred (the frame correlates to args.state.tick_count). Otherwise the value will be nil. For a full listing of keys, take a look at mygame/documentation/06-keyboard.md. - args.state.PROPERTY: The state property on args is a dynamic structure. You can define ANY property here with ANY type of arbitrary nesting. Properties defined on args.state will be retained across frames. If you attempt access a property that doesn't exist on args.state, it will simply return nil (no exception will be thrown). =end # Along with outputs, inputs are also an essential part of video game development # DragonRuby can take input from keyboards, mouse, and controllers. # This sample app will cover keyboard input. # args.inputs.keyboard.key_up.a will check to see if the a key has been pressed # This will work with the other keys as well def tick args tick_instructions args, "Sample app shows how keyboard events are registered and accessed.", 360 # Notice how small_font accounts for all the remaining parameters args.outputs.labels << [460, row_to_px(args, 0), "Current game time: #{args.state.tick_count}", small_font] args.outputs.labels << [460, row_to_px(args, 2), "Keyboard input: args.inputs.keyboard.key_up.h", small_font] args.outputs.labels << [460, row_to_px(args, 3), "Press \"h\" on the keyboard.", small_font] # Input on a specifc key can be found through args.inputs.keyboard.key_up followed by the key if args.inputs.keyboard.key_up.h args.state.h_pressed_at = args.state.tick_count end # This code simplifies to if args.state.h_pressed_at has not been initialized, set it to false args.state.h_pressed_at ||= false if args.state.h_pressed_at args.outputs.labels << [460, row_to_px(args, 4), "\"h\" was pressed at time: #{args.state.h_pressed_at}", small_font] else args.outputs.labels << [460, row_to_px(args, 4), "\"h\" has never been pressed.", small_font] end tick_help_text args end def small_font # This method provides some values for the construction of labels # Specifically, Size, Alignment, & RGBA # This makes it so that custom parameters don't have to be repeatedly typed. # Additionally "small_font" provides programmers with more information than some numbers [-2, 0, 0, 0, 0, 255] end def row_to_px args, row_number # This takes a row_number and converts it to pixels DragonRuby understands. # Row 0 starts 5 units below the top of the grid # Each row afterward is 20 units lower args.grid.top.shift_down(5).shift_down(20 * row_number) end # Don't worry about understanding the code within this method just yet. # This method shows you the help text within the game. def tick_help_text args return unless args.state.h_pressed_at args.state.key_value_history ||= {} args.state.key_down_value_history ||= {} args.state.key_held_value_history ||= {} args.state.key_up_value_history ||= {} if (args.inputs.keyboard.key_down.truthy_keys.length > 0 || args.inputs.keyboard.key_held.truthy_keys.length > 0 || args.inputs.keyboard.key_up.truthy_keys.length > 0) args.state.help_available = true args.state.no_activity_debounce = nil else args.state.no_activity_debounce ||= 5.seconds args.state.no_activity_debounce -= 1 if args.state.no_activity_debounce <= 0 args.state.help_available = false args.state.key_value_history = {} args.state.key_down_value_history = {} args.state.key_held_value_history = {} args.state.key_up_value_history = {} end end args.outputs.labels << [10, row_to_px(args, 6), "Advanced Help:", small_font] if !args.state.help_available args.outputs.labels << [10, row_to_px(args, 7), "Press a key and I'll show code to access the key and what value will be returned if you used the code.", small_font] return end args.outputs.labels << [10 , row_to_px(args, 7), "args.inputs.keyboard", small_font] args.outputs.labels << [330, row_to_px(args, 7), "args.inputs.keyboard.key_down", small_font] args.outputs.labels << [650, row_to_px(args, 7), "args.inputs.keyboard.key_held", small_font] args.outputs.labels << [990, row_to_px(args, 7), "args.inputs.keyboard.key_up", small_font] fill_history args, :key_value_history, :down_or_held, nil fill_history args, :key_down_value_history, :down, :key_down fill_history args, :key_held_value_history, :held, :key_held fill_history args, :key_up_value_history, :up, :key_up render_help_labels args, :key_value_history, :down_or_held, nil, 10 render_help_labels args, :key_down_value_history, :down, :key_down, 330 render_help_labels args, :key_held_value_history, :held, :key_held, 650 render_help_labels args, :key_up_value_history, :up, :key_up, 990 end def fill_history args, history_key, state_key, keyboard_method fill_single_history args, history_key, state_key, keyboard_method, :raw_key fill_single_history args, history_key, state_key, keyboard_method, :char args.inputs.keyboard.keys[state_key].each do |key_name| fill_single_history args, history_key, state_key, keyboard_method, key_name end end def fill_single_history args, history_key, state_key, keyboard_method, key_name current_value = args.inputs.keyboard.send(key_name) if keyboard_method current_value = args.inputs.keyboard.send(keyboard_method).send(key_name) end args.state.as_hash[history_key][key_name] ||= [] args.state.as_hash[history_key][key_name] << current_value args.state.as_hash[history_key][key_name] = args.state.as_hash[history_key][key_name].reverse.uniq.take(3).reverse end def render_help_labels args, history_key, state_key, keyboard_method, x idx = 8 args.outputs.labels << args.state .as_hash[history_key] .keys .reverse .map .with_index do |k, i| v = args.state.as_hash[history_key][k] current_value = args.inputs.keyboard.send(k) if keyboard_method current_value = args.inputs.keyboard.send(keyboard_method).send(k) end idx += 2 [ [x, row_to_px(args, idx - 2), " .#{k} is #{current_value || "nil"}", small_font], [x, row_to_px(args, idx - 1), " was #{v}", small_font] ] end end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Input Basics - Mouse - main.rb
# ./samples/02_input_basics/02_mouse/app/main.rb =begin APIs that haven't been encountered in a previous sample apps: - args.inputs.mouse.click: This property will be set if the mouse was clicked. - args.inputs.mouse.click.point.(x|y): The x and y location of the mouse. - args.inputs.mouse.click.point.created_at: The frame the mouse click occurred in. - args.inputs.mouse.click.point.created_at_elapsed: How many frames have passed since the click event. Reminder: - args.state.PROPERTY: The state property on args is a dynamic structure. You can define ANY property here with ANY type of arbitrary nesting. Properties defined on args.state will be retained across frames. If you attempt access a property that doesn't exist on args.state, it will simply return nil (no exception will be thrown). =end # This code demonstrates DragonRuby mouse input # To see if the a mouse click occurred # Use args.inputs.mouse.click # Which returns a boolean # To see where a mouse click occurred # Use args.inputs.mouse.click.point.x AND # args.inputs.mouse.click.point.y # To see which frame the click occurred # Use args.inputs.mouse.click.created_at # To see how many frames its been since the click occurred # Use args.inputs.mouse.click.creat_at_elapsed # Saving the click in args.state can be quite useful def tick args tick_instructions args, "Sample app shows how mouse events are registered and how to measure elapsed time." x = 460 args.outputs.labels << small_label(args, x, 11, "Mouse input: args.inputs.mouse") if args.inputs.mouse.click args.state.last_mouse_click = args.inputs.mouse.click end if args.state.last_mouse_click click = args.state.last_mouse_click args.outputs.labels << small_label(args, x, 12, "Mouse click happened at: #{click.created_at}") args.outputs.labels << small_label(args, x, 13, "Mouse clicked #{click.created_at_elapsed} ticks ago") args.outputs.labels << small_label(args, x, 14, "Mouse click location: #{click.point.x}, #{click.point.y}") else args.outputs.labels << small_label(args, x, 12, "Mouse click has not occurred yet.") args.outputs.labels << small_label(args, x, 13, "Please click mouse.") end end def small_label args, x, row, message # This method effectively combines the row_to_px and small_font methods # It changes the given row value to a DragonRuby pixel value # and adds the customization parameters [x, row_to_px(args, row), message, small_font] end def small_font [-2, 0, 0, 0, 0, 255] end def row_to_px args, row_number args.grid.top.shift_down(5).shift_down(20 * row_number) end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Input Basics - Mouse Point To Rect - main.rb
# ./samples/02_input_basics/03_mouse_point_to_rect/app/main.rb =begin APIs that haven't been encountered in a previous sample apps: - args.outputus.borders: An array. Values in this array will be rendered as unfilled rectangles on the screen. - ARRAY#inside_rect?: An array with at least two values is considered a point. An array with at least four values is considered a rect. The inside_rect? function returns true or false depending on if the point is inside the rect. ``` # Point: x: 100, y: 100 # Rect: x: 0, y: 0, w: 500, h: 500 # Result: true [100, 100].inside_rect? [0, 0, 500, 500] ``` ``` # Point: x: 100, y: 100 # Rect: x: 300, y: 300, w: 100, h: 100 # Result: false [100, 100].inside_rect? [300, 300, 100, 100] ``` - args.inputs.mouse.click.point.created_at: The frame the mouse click occurred in. - args.inputs.mouse.click.point.created_at_elapsed: How many frames have passed since the click event. =end # To determine whether a point is in a rect # Use point.inside_rect? rect # This is useful to determine if a click occurred in a rect def tick args tick_instructions args, "Sample app shows how to determing if a click happened inside a rectangle." x = 460 args.outputs.labels << small_label(args, x, 15, "Click inside the blue box maybe ---->") box = [785, 370, 50, 50, 0, 0, 170] args.outputs.borders << box # Saves the most recent click into args.state # Unlike the other components of args, # args.state does not reset every tick. if args.inputs.mouse.click args.state.last_mouse_click = args.inputs.mouse.click end if args.state.last_mouse_click if args.state.last_mouse_click.point.inside_rect? box args.outputs.labels << small_label(args, x, 16, "Mouse click happened *inside* the box.") else args.outputs.labels << small_label(args, x, 16, "Mouse click happened *outside* the box.") end else args.outputs.labels << small_label(args, x, 16, "Mouse click has not occurred yet.") end end def small_label args, x, row, message [x, row_to_px(args, row), message, small_font] end def small_font [-2, 0, 0, 0, 0, 255] end def row_to_px args, row_number args.grid.top.shift_down(5).shift_down(20 * row_number) end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Input Basics - Mouse Rect To Rect - main.rb
# ./samples/02_input_basics/04_mouse_rect_to_rect/app/main.rb =begin APIs that haven't been encountered in a previous sample apps: - args.outputs.borders: An array. Values in this array will be rendered as unfilled rectangles on the screen. - ARRAY#intersect_rect?: An array with at least four values is considered a rect. The intersect_rect? function returns true or false depending on if the two rectangles intersect. ``` # Rect One: x: 100, y: 100, w: 100, h: 100 # Rect Two: x: 0, y: 0, w: 500, h: 500 # Result: true [100, 100, 100, 100].intersect_rect? [0, 0, 500, 500] ``` ``` # Rect One: x: 100, y: 100, w: 10, h: 10 # Rect Two: x: 500, y: 500, w: 10, h: 10 # Result: false [100, 100, 10, 10].intersect_rect? [500, 500, 10, 10] ``` =end # Similarly, whether rects intersect can be found through # rect1.intersect_rect? rect2 def tick args tick_instructions args, "Sample app shows how to determine if two rectangles intersect." x = 460 args.outputs.labels << small_label(args, x, 3, "Click anywhere on the screen") # red_box = [460, 250, 355, 90, 170, 0, 0] # args.outputs.borders << red_box # args.state.box_collision_one and args.state.box_collision_two # Are given values of a solid when they should be rendered # They are stored in game so that they do not get reset every tick if args.inputs.mouse.click if !args.state.box_collision_one args.state.box_collision_one = [args.inputs.mouse.click.point.x - 25, args.inputs.mouse.click.point.y - 25, 125, 125, 180, 0, 0, 180] elsif !args.state.box_collision_two args.state.box_collision_two = [args.inputs.mouse.click.point.x - 25, args.inputs.mouse.click.point.y - 25, 125, 125, 0, 0, 180, 180] else args.state.box_collision_one = nil args.state.box_collision_two = nil end end if args.state.box_collision_one args.outputs.solids << args.state.box_collision_one end if args.state.box_collision_two args.outputs.solids << args.state.box_collision_two end if args.state.box_collision_one && args.state.box_collision_two if args.state.box_collision_one.intersect_rect? args.state.box_collision_two args.outputs.labels << small_label(args, x, 4, 'The boxes intersect.') else args.outputs.labels << small_label(args, x, 4, 'The boxes do not intersect.') end else args.outputs.labels << small_label(args, x, 4, '--') end end def small_label args, x, row, message [x, row_to_px(args, row), message, small_font] end def small_font [-2, 0, 0, 0, 0, 255] end def row_to_px args, row_number args.grid.top.shift_down(5).shift_down(20 * row_number) end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Input Basics - Controller - main.rb
# ./samples/02_input_basics/05_controller/app/main.rb =begin APIs listing that haven't been encountered in previous sample apps: - args.inputs.controller_one.key_held.KEY: Will check to see if a specific key is being held down on the controller. If there is more than one controller being used, they can be differentiated by using names like controller_one and controller_two. For a full listing of buttons, take a look at mygame/documentation/08-controllers.md. Reminder: - args.state.PROPERTY: The state property on args is a dynamic structure. You can define ANY property here with ANY type of arbitrary nesting. Properties defined on args.state will be retained across frames. If you attempt to access a property that doesn't exist on args.state, it will simply return nil (no exception will be thrown). In this sample app, args.state.BUTTONS is an array that stores the buttons of the controller. The parameters of a button are: 1. the position (x, y) 2. the input key held on the controller 3. the text or name of the button =end # This sample app provides a visual demonstration of a standard controller, including # the placement and function of all buttons. class ControllerDemo attr_accessor :inputs, :state, :outputs # Calls the methods necessary for the app to run successfully. def tick process_inputs render end # Starts with an empty collection of buttons. # Adds buttons that are on the controller to the collection. def process_inputs state.buttons = [] state.buttons << [100, 500, inputs.controller_one.key_held.l1, "L1"] state.buttons << [100, 600, inputs.controller_one.key_held.l2, "L2"] state.buttons << [1100, 500, inputs.controller_one.key_held.r1, "R1"] state.buttons << [1100, 600, inputs.controller_one.key_held.r2, "R2"] state.buttons << [540, 450, inputs.controller_one.key_held.select, "Select"] state.buttons << [660, 450, inputs.controller_one.key_held.start, "Start"] state.buttons << [200, 300, inputs.controller_one.key_held.left, "Left"] state.buttons << [300, 400, inputs.controller_one.key_held.up, "Up"] state.buttons << [400, 300, inputs.controller_one.key_held.right, "Right"] state.buttons << [300, 200, inputs.controller_one.key_held.down, "Down"] state.buttons << [800, 300, inputs.controller_one.key_held.x, "X"] state.buttons << [900, 400, inputs.controller_one.key_held.y, "Y"] state.buttons << [1000, 300, inputs.controller_one.key_held.a, "A"] state.buttons << [900, 200, inputs.controller_one.key_held.b, "B"] state.buttons << [450 + inputs.controller_one.left_analog_x_perc * 100, 100 + inputs.controller_one.left_analog_y_perc * 100, inputs.controller_one.key_held.l3, "L3"] state.buttons << [750 + inputs.controller_one.right_analog_x_perc * 100, 100 + inputs.controller_one.right_analog_y_perc * 100, inputs.controller_one.key_held.r3, "R3"] end # Gives each button a square shape. # If the button is being pressed or held (which means it is considered active), # the square is filled in. Otherwise, the button simply has a border. def render state.buttons.each do |x, y, active, text| rect = [x, y, 75, 75] if active # if button is pressed outputs.solids << rect # rect is output as solid (filled in) else outputs.borders << rect # otherwise, output as border end # Outputs the text of each button using labels. outputs.labels << [x, y + 95, text] # add 95 to place label above button end outputs.labels << [10, 60, "Left Analog x: #{inputs.controller_one.left_analog_x_raw} (#{inputs.controller_one.left_analog_x_perc * 100}%)"] outputs.labels << [10, 30, "Left Analog y: #{inputs.controller_one.left_analog_y_raw} (#{inputs.controller_one.left_analog_y_perc * 100}%)"] outputs.labels << [900, 60, "Right Analog x: #{inputs.controller_one.right_analog_x_raw} (#{inputs.controller_one.right_analog_x_perc * 100}%)"] outputs.labels << [900, 30, "Right Analog y: #{inputs.controller_one.right_analog_y_raw} (#{inputs.controller_one.right_analog_y_perc * 100}%)"] end end $controller_demo = ControllerDemo.new def tick args tick_instructions args, "Sample app shows how controller input is handled. You'll need to connect a USB controller." $controller_demo.inputs = args.inputs $controller_demo.state = args.state $controller_demo.outputs = args.outputs $controller_demo.tick end # Resets the app. def r $gtk.reset end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Input Basics - Touch - main.rb
# ./samples/02_input_basics/06_touch/app/main.rb def tick args args.outputs.background_color = [ 0, 0, 0 ] args.outputs.primitives << [640, 700, "Touch your screen.", 5, 1, 255, 255, 255].label # If you don't want to get fancy, you can just look for finger_one # (and _two, if you like), which are assigned in the order new touches hit # the screen. If not nil, they are touching right now, and are just # references to specific items in the args.input.touch hash. # If finger_one lifts off, it will become nil, but finger_two, if it was # touching, remains until it also lifts off. When all fingers lift off, the # the next new touch will be finger_one again, but until then, new touches # don't fill in earlier slots. if !args.inputs.finger_one.nil? args.outputs.primitives << [640, 650, "Finger #1 is touching at (#{args.inputs.finger_one.x}, #{args.inputs.finger_one.y}).", 5, 1, 255, 255, 255].label end if !args.inputs.finger_two.nil? args.outputs.primitives << [640, 600, "Finger #2 is touching at (#{args.inputs.finger_two.x}, #{args.inputs.finger_two.y}).", 5, 1, 255, 255, 255].label end # Here's the more flexible interface: this will report as many simultaneous # touches as the system can handle, but it's a little more effort to track # them. Each item in the args.input.touch hash has a unique key (an # incrementing integer) that exists until the finger lifts off. You can # tell which order the touches happened globally by the key value, or # by the touch[id].touch_order field, which resets to zero each time all # touches have lifted. args.state.colors ||= [ 0xFF0000, 0x00FF00, 0x1010FF, 0xFFFF00, 0xFF00FF, 0x00FFFF, 0xFFFFFF ] size = 100 args.inputs.touch.each { |k,v| color = args.state.colors[v.touch_order % 7] r = (color & 0xFF0000) >> 16 g = (color & 0x00FF00) >> 8 b = (color & 0x0000FF) args.outputs.primitives << [v.x - (size / 2), v.y + (size / 2), size, size, r, g, b, 255].solid args.outputs.primitives << [v.x, v.y + size, k.to_s, 0, 1, 0, 0, 0].label } end
Rendering Sprites - Animation Using Separate Pngs - main.rb
# ./samples/03_rendering_sprites/01_animation_using_separate_pngs/app/main.rb =begin Reminders: - String interpolation: Uses #{} syntax; everything between the #{ and the } is evaluated as Ruby code, and the placeholder is replaced with its corresponding value or result. In this sample app, we're using string interpolation to iterate through images in the sprites folder using their image path names. - args.outputs.sprites: An array. Values in this array generate sprites on the screen. The parameters are [X, Y, WIDTH, HEIGHT, IMAGE PATH] For more information about sprites, go to mygame/documentation/05-sprites.md. - args.outputs.labels: An array. Values in the array generate labels on the screen. The parameters are [X, Y, TEXT, SIZE, ALIGNMENT, RED, GREEN, BLUE, ALPHA, FONT STYLE] For more information about labels, go to mygame/documentation/02-labels.md. - args.inputs.keyboard.key_down.KEY: Determines if a key is in the down state, or pressed. Stores the frame that key was pressed on. For more information about the keyboard, go to mygame/documentation/06-keyboard.md. =end # This sample app demonstrates how sprite animations work. # There are two sprites that animate forever and one sprite # that *only* animates when you press the "f" key on the keyboard. # This is the entry point to your game. The `tick` method # executes at 60 frames per second. There are two methods # in this tick "entry point": `looping_animation`, and the # second method is `one_time_animation`. def tick args looping_animation args one_time_animation args end # This function shows how to animate a sprite that loops forever. def looping_animation args # Here we define a few local variables that will be sent # into the magic function that gives us the correct sprite image # over time. There are four things we need in order to figure # out which sprite to show. # 1. When to start the animation. start_looping_at = 0 # 2. The number of pngs that represent the full animation. number_of_sprites = 6 # 3. How long to show each png. number_of_frames_to_show_each_sprite = 4 # 4. Whether the animation should loop once, or forever. does_sprite_loop = true # With the variables defined above, we can get a number # which represents the sprite to show by calling the `frame_index` function. # In this case the number will be between 0, and 5 (you can see the sprites # in the ./sprites directory). sprite_index = start_looping_at.frame_index number_of_sprites, number_of_frames_to_show_each_sprite, does_sprite_loop # Now that we have `sprite_index, we can present the correct file. args.outputs.sprites << [100, 100, 100, 100, "sprites/dragon_fly_#{sprite_index}.png"] # Try changing the numbers below to see how the animation changes: args.outputs.sprites << [100, 200, 100, 100, "sprites/dragon_fly_#{0.frame_index 6, 4, true}.png"] end # This function shows how to animate a sprite that executes # only once when the "f" key is pressed. def one_time_animation args # This is just a label the shows instructions within the game. args.outputs.labels << [220, 350, "(press f to animate)"] # If "f" is pressed on the keyboard... if args.inputs.keyboard.key_down.f # Print the frame that "f" was pressed on. puts "Hello from main.rb! The \"f\" key was in the down state on frame: #{args.inputs.keyboard.key_down.f}" # And MOST IMPORTANTLY set the point it time to start the animation, # equal to "now" which is represented as args.state.tick_count. # Also IMPORTANT, you'll notice that the value of when to start looping # is stored in `args.state`. This construct's values are retained across # executions of the `tick` method. args.state.start_looping_at = args.state.tick_count end # These are the same local variables that were defined # for the `looping_animation` function. number_of_sprites = 6 number_of_frames_to_show_each_sprite = 4 # Except this sprite does not loop again. If the animation time has passed, # then the frame_index function returns nil. does_sprite_loop = false sprite_index = args.state .start_looping_at .frame_index number_of_sprites, number_of_frames_to_show_each_sprite, does_sprite_loop # This line sets the frame index to zero, if # the animation duration has passed (frame_index returned nil). # Remeber: we are not looping forever here. sprite_index ||= 0 # Present the sprite. args.outputs.sprites << [100, 300, 100, 100, "sprites/dragon_fly_#{sprite_index}.png"] tick_instructions args, "Sample app shows how to use Numeric#frame_index and string interpolation to animate a sprite over time." end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Rendering Sprites - Animation Using Sprite Sheet - main.rb
# ./samples/03_rendering_sprites/02_animation_using_sprite_sheet/app/main.rb def tick args args.state.player.x ||= 100 args.state.player.y ||= 100 args.state.player.w ||= 64 args.state.player.h ||= 64 args.state.player.direction ||= 1 args.state.player.is_moving = false # get the keyboard input and set player properties if args.inputs.keyboard.right args.state.player.x += 3 args.state.player.direction = 1 args.state.player.started_running_at ||= args.state.tick_count elsif args.inputs.keyboard.left args.state.player.x -= 3 args.state.player.direction = -1 args.state.player.started_running_at ||= args.state.tick_count end if args.inputs.keyboard.up args.state.player.y += 1 args.state.player.started_running_at ||= args.state.tick_count elsif args.inputs.keyboard.down args.state.player.y -= 1 args.state.player.started_running_at ||= args.state.tick_count end # if no arrow keys are being pressed, set the player as not moving if !args.inputs.keyboard.directional_vector args.state.player.started_running_at = nil end # wrap player around the stage if args.state.player.x > 1280 args.state.player.x = -64 args.state.player.started_running_at ||= args.state.tick_count elsif args.state.player.x < -64 args.state.player.x = 1280 args.state.player.started_running_at ||= args.state.tick_count end if args.state.player.y > 720 args.state.player.y = -64 args.state.player.started_running_at ||= args.state.tick_count elsif args.state.player.y < -64 args.state.player.y = 720 args.state.player.started_running_at ||= args.state.tick_count end # render player as standing or running if args.state.player.started_running_at args.outputs.sprites << running_sprite(args) else args.outputs.sprites << standing_sprite(args) end args.outputs.labels << [30, 700, "Use arrow keys to move around."] end def standing_sprite args { x: args.state.player.x, y: args.state.player.y, w: args.state.player.w, h: args.state.player.h, path: "sprites/horizontal-stand.png", flip_horizontally: args.state.player.direction > 0 } end def running_sprite args if !args.state.player.started_running_at tile_index = 0 else how_many_frames_in_sprite_sheet = 6 how_many_ticks_to_hold_each_frame = 3 should_the_index_repeat = true tile_index = args.state .player .started_running_at .frame_index(how_many_frames_in_sprite_sheet, how_many_ticks_to_hold_each_frame, should_the_index_repeat) end { x: args.state.player.x, y: args.state.player.y, w: args.state.player.w, h: args.state.player.h, path: 'sprites/horizontal-run.png', tile_x: 0 + (tile_index * args.state.player.w), tile_y: 0, tile_w: args.state.player.w, tile_h: args.state.player.h, flip_horizontally: args.state.player.direction > 0, } end
Rendering Sprites - Animation States - main.rb
# ./samples/03_rendering_sprites/03_animation_states/app/main.rb class Game attr_gtk def defaults state.show_debug_layer = true if state.tick_count == 0 player.tile_size = 64 player.speed = 3 player.slash_frames = 15 player.x ||= 50 player.y ||= 400 player.dir_x ||= 1 player.dir_y ||= -1 player.is_moving ||= false state.watch_list ||= {} state.enemies ||= [] end def add_enemy state.enemies << { x: 1200 * rand, y: 600 * rand, w: 64, h: 64 } end def sprite_horizontal_run tile_index = 0.frame_index(6, 3, true) tile_index = 0 if !player.is_moving { x: player.x, y: player.y, w: player.tile_size, h: player.tile_size, path: 'sprites/horizontal-run.png', tile_x: 0 + (tile_index * player.tile_size), tile_y: 0, tile_w: player.tile_size, tile_h: player.tile_size, flip_horizontally: player.dir_x > 0, # a: 40 } end def sprite_horizontal_stand { x: player.x, y: player.y, w: player.tile_size, h: player.tile_size, path: 'sprites/horizontal-stand.png', flip_horizontally: player.dir_x > 0, # a: 40 } end def sprite_horizontal_slash tile_index = player.slash_at.frame_index(5, player.slash_frames.idiv(5), false) || 0 { x: player.x - 41.25, y: player.y - 41.25, w: 165, h: 165, path: 'sprites/horizontal-slash.png', tile_x: 0 + (tile_index * 128), tile_y: 0, tile_w: 128, tile_h: 128, flip_horizontally: player.dir_x > 0 } end def render_player if player.slash_at outputs.sprites << sprite_horizontal_slash elsif player.is_moving outputs.sprites << sprite_horizontal_run else outputs.sprites << sprite_horizontal_stand end end def render_enemies outputs.borders << state.enemies end def render_debug_layer return if !state.show_debug_layer outputs.labels << state.watch_list.map.with_index do |(k, v), i| [30, 710 - i * 28, "#{k}: #{v || "(nil)"}"] end outputs.borders << player.slash_collision_rect end def slash_initiate? # buffalo usb controller has a button and b button swapped lol inputs.controller_one.key_down.a || inputs.keyboard.key_down.j end def input # player movement if slash_complete? && (vector = inputs.directional_vector) player.x += vector.x * player.speed player.y += vector.y * player.speed end player.slash_at = slash_initiate? if slash_initiate? end def calc_movement # movement if vector = inputs.directional_vector state.debug_label = vector player.dir_x = vector.x player.dir_y = vector.y player.is_moving = true else state.debug_label = vector player.is_moving = false end end def calc_slash # re-calc the location of the swords collision box if player.dir_x.positive? player.slash_collision_rect = [player.x + player.tile_size, player.y + player.tile_size.half - 10, 40, 20] else player.slash_collision_rect = [player.x - 32 - 8, player.y + player.tile_size.half - 10, 40, 20] end # recalc sword's slash state player.slash_at = nil if slash_complete? # determine collision if the sword is at it's point of damaging return unless slash_can_damage? state.enemies.reject! { |e| e.intersect_rect? player.slash_collision_rect } end def slash_complete? !player.slash_at || player.slash_at.elapsed?(player.slash_frames) end def slash_can_damage? # damage occurs half way into the slash animation return false if slash_complete? return false if (player.slash_at + player.slash_frames.idiv(2)) != state.tick_count return true end def calc # generate an enemy if there aren't any on the screen add_enemy if state.enemies.length == 0 calc_movement calc_slash end # source is at http://github.com/amirrajan/dragonruby-link-to-the-past def tick defaults render_enemies render_player outputs.labels << [30, 30, "Gamepad: D-Pad to move. B button to attack."] outputs.labels << [30, 52, "Keyboard: WASD/Arrow keys to move. J to attack."] render_debug_layer input calc end def player state.player end end $game = Game.new def tick args $game.args = args $game.tick end $gtk.reset
Rendering Sprites - Color And Rotation - main.rb
# ./samples/03_rendering_sprites/04_color_and_rotation/app/main.rb =begin APIs listing that haven't been encountered in previous sample apps: - merge: Returns a hash containing the contents of two original hashes. Merge does not allow duplicate keys, so the value of a repeated key will be overwritten. For example, if we had two hashes h1 = { "a" => 1, "b" => 2} h2 = { "b" => 3, "c" => 3} and we called the command h1.merge(h2) the result would the following hash { "a" => 1, "b" => 3, "c" => 3}. Reminders: - Hashes: Collection of unique keys and their corresponding values. The value can be found using their keys. In this sample app, we're using a hash to create a sprite. - args.outputs.sprites: An array. The values generate a sprite. The parameters are [X, Y, WIDTH, HEIGHT, PATH, ANGLE, ALPHA, RED, GREEN, BLUE] Before continuing with this sample app, it is HIGHLY recommended that you look at mygame/documentation/05-sprites.md. - args.inputs.keyboard.key_held.KEY: Determines if a key is being pressed. For more information about the keyboard, go to mygame/documentation/06-keyboard.md. - args.inputs.controller_one: Takes input from the controller based on what key is pressed. For more information about the controller, go to mygame/documentation/08-controllers.md. - num1.lesser(num2): Finds the lower value of the given options. =end # This sample app shows a car moving across the screen. It loops back around if it exceeds the dimensions of the screen, # and also can be moved in different directions through keyboard input from the user. # Calls the methods necessary for the game to run successfully. def tick args default args render args.grid, args.outputs, args.state calc args.state process_inputs args end # Sets default values for the car sprite # Initialization ||= only happens in the first frame def default args args.state.sprite.width = 19 args.state.sprite.height = 10 args.state.sprite.scale = 4 args.state.max_speed = 5 args.state.x ||= 100 args.state.y ||= 100 args.state.speed ||= 1 args.state.angle ||= 0 end # Outputs sprite onto screen def render grid, outputs, state outputs.solids << [grid.rect, 70, 70, 70] # outputs gray background outputs.sprites << [destination_rect(state), # sets first four parameters of car sprite 'sprites/86.png', # image path of car state.angle, opacity, # transparency saturation, source_rect(state), # sprite sub division/tile (tile x, y, w, h) false, false, # don't flip sprites rotation_anchor] # also look at the create_sprite helper method # # For example: # # dest = destination_rect(state) # source = source_rect(state), # outputs.sprites << create_sprite( # 'sprites/86.png', # x: dest.x, # y: dest.y, # w: dest.w, # h: dest.h, # angle: state.angle, # source_x: source.x, # source_y: source.y, # source_w: source.w, # source_h: source.h, # flip_h: false, # flip_v: false, # rotation_anchor_x: 0.7, # rotation_anchor_y: 0.5 # ) end # Creates sprite by setting values inside of a hash def create_sprite path, options = {} options = { # dest x, y, w, h x: 0, y: 0, w: 100, h: 100, # angle, rotation angle: 0, rotation_anchor_x: 0.5, rotation_anchor_y: 0.5, # color saturation (red, green, blue), transparency r: 255, g: 255, b: 255, a: 255, # source x, y, width, height source_x: 0, source_y: 0, source_w: -1, source_h: -1, # flip horiztonally, flip vertically flip_h: false, flip_v: false, }.merge options [ options[:x], options[:y], options[:w], options[:h], # dest rect keys path, options[:angle], options[:a], options[:r], options[:g], options[:b], # angle, color, alpha options[:source_x], options[:source_y], options[:source_w], options[:source_h], # source rect keys options[:flip_h], options[:flip_v], # flip options[:rotation_anchor_x], options[:rotation_anchor_y], # rotation anchor ] # hash keys contain corresponding values end # Calls the calc_pos and calc_wrap methods. def calc state calc_pos state calc_wrap state end # Changes sprite's position on screen # Vectors have magnitude and direction, so the incremented x and y values give the car direction def calc_pos state state.x += state.angle.vector_x * state.speed # increments x by product of angle's x vector and speed state.y += state.angle.vector_y * state.speed # increments y by product of angle's y vector and speed state.speed *= 1.1 # scales speed up state.speed = state.speed.lesser(state.max_speed) # speed is either current speed or max speed, whichever has a lesser value (ensures that the car doesn't go too fast or exceed the max speed) end # The screen's dimensions are 1280x720. If the car goes out of scope, # it loops back around on the screen. def calc_wrap state # car returns to left side of screen if it disappears on right side of screen # sprite.width refers to tile's size, which is multipled by scale (4) to make it bigger state.x = -state.sprite.width * state.sprite.scale if state.x - 20 > 1280 # car wraps around to right side of screen if it disappears on the left side state.x = 1280 if state.x + state.sprite.width * state.sprite.scale + 20 < 0 # car wraps around to bottom of screen if it disappears at the top of the screen # if you subtract 520 pixels instead of 20 pixels, the car takes longer to reappear (try it!) state.y = 0 if state.y - 20 > 720 # if 20 pixels less than car's y position is greater than vertical scope # car wraps around to top of screen if it disappears at the bottom of the screen state.y = 720 if state.y + state.sprite.height * state.sprite.scale + 20 < 0 end # Changes angle of sprite based on user input from keyboard or controller def process_inputs args # NOTE: increasing the angle doesn't mean that the car will continue to go # in a specific direction. The angle is increasing, which means that if the # left key was kept in the "down" state, the change in the angle would cause # the car to go in a counter-clockwise direction and form a circle (360 degrees) if args.inputs.keyboard.key_held.left # if left key is pressed args.state.angle += 2 # car's angle is incremented by 2 # The same applies to decreasing the angle. If the right key was kept in the # "down" state, the decreasing angle would cause the car to go in a clockwise # direction and form a circle (360 degrees) elsif args.inputs.keyboard.key_held.right # if right key is pressed args.state.angle -= 2 # car's angle is decremented by 2 # Input from a controller can also change the angle of the car elsif args.inputs.controller_one.left_analog_x_perc != 0 args.state.angle += 2 * args.inputs.controller_one.left_analog_x_perc * -1 end end # A sprite's center of rotation can be altered # Increasing either of these numbers would dramatically increase the # car's drift when it turns! def rotation_anchor [0.7, 0.5] end # Sets opacity value of sprite to 255 so that it is not transparent at all # Change it to 0 and you won't be able to see the car sprite on the screen def opacity 255 end # Sets the color of the sprite to white. def saturation [255, 255, 255] end # Sets definition of destination_rect (used to define the car sprite) def destination_rect state [state.x, state.y, state.sprite.width * state.sprite.scale, # multiplies by 4 to set size state.sprite.height * state.sprite.scale] end # Portion of a sprite (a tile) # Sub division of sprite is denoted as a rectangle directly related to original size of .png # Tile is located at bottom left corner within a 19x10 pixel rectangle (based on sprite.width, sprite.height) def source_rect state [0, 0, state.sprite.width, state.sprite.height] end
Physics And Collisions - Simple - main.rb
# ./samples/04_physics_and_collisions/01_simple/app/main.rb =begin Reminders: - ARRAY#intersect_rect?: Returns true or false depending on if the two rectangles intersect. - args.outputs.solids: An array. The values generate a solid. The parameters are [X, Y, WIDTH, HEIGHT, RED, GREEN, BLUE] =end # This sample app shows collisions between two boxes. # Runs methods needed for game to run properly. def tick args tick_instructions args, "Sample app shows how to move a square over time and determine collision." defaults args render args calc args end # Sets default values. def defaults args # These values represent the moving box. args.state.moving_box_speed = 10 args.state.moving_box_size = 100 args.state.moving_box_dx ||= 1 args.state.moving_box_dy ||= 1 args.state.moving_box ||= [0, 0, args.state.moving_box_size, args.state.moving_box_size] # moving_box_size is set as the width and height # These values represent the center box. args.state.center_box ||= [540, 260, 200, 200, 180] args.state.center_box_collision ||= false # initially no collision end def render args # If the game state denotes that a collision has occured, # render a solid square, otherwise render a border instead. if args.state.center_box_collision args.outputs.solids << args.state.center_box else args.outputs.borders << args.state.center_box end # Then render the moving box. args.outputs.solids << args.state.moving_box end # Generally in a pipeline for a game engine, you have rendering, # game simulation (calculation), and input processing. # This fuction represents the game simulation. def calc args position_moving_box args determine_collision_center_box args end # Changes the position of the moving box on the screen by multiplying the change in x (dx) and change in y (dy) by the speed, # and adding it to the current position. # dx and dy are positive if the box is moving right and up, respectively # dx and dy are negative if the box is moving left and down, respectively def position_moving_box args args.state.moving_box.x += args.state.moving_box_dx * args.state.moving_box_speed args.state.moving_box.y += args.state.moving_box_dy * args.state.moving_box_speed # 1280x720 are the virtual pixels you work with (essentially 720p). screen_width = 1280 screen_height = 720 # Position of the box is denoted by the bottom left hand corner, in # that case, we have to subtract the width of the box so that it stays # in the scene (you can try deleting the subtraction to see how it # impacts the box's movement). if args.state.moving_box.x > screen_width - args.state.moving_box_size args.state.moving_box_dx = -1 # moves left elsif args.state.moving_box.x < 0 args.state.moving_box_dx = 1 # moves right end # Here, we're making sure the moving box remains within the vertical scope of the screen if args.state.moving_box.y > screen_height - args.state.moving_box_size # if the box moves too high args.state.moving_box_dy = -1 # moves down elsif args.state.moving_box.y < 0 # if the box moves too low args.state.moving_box_dy = 1 # moves up end end def determine_collision_center_box args # Collision is handled by the engine. You simply have to call the # `intersect_rect?` function. if args.state.moving_box.intersect_rect? args.state.center_box # if the two boxes intersect args.state.center_box_collision = true # then a collision happened else args.state.center_box_collision = false # otherwise, no collision happened end end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Physics And Collisions - Moving Objects - main.rb
# ./samples/04_physics_and_collisions/02_moving_objects/app/main.rb =begin APIs listing that haven't been encountered in previous sample apps: - Hashes: Collection of unique keys and their corresponding values. The value can be found using their keys. For example, if we have a "numbers" hash that stores numbers in English as the key and numbers in Spanish as the value, we'd have a hash that looks like this... numbers = { "one" => "uno", "two" => "dos", "three" => "tres" } and on it goes. Now if we wanted to find the corresponding value of the "one" key, we could say puts numbers["one"] which would print "uno" to the console. - num1.greater(num2): Returns the greater value. For example, if we have the command puts 4.greater(3) the number 4 would be printed to the console since it has a greater value than 3. Similar to lesser, which returns the lesser value. - num1.lesser(num2): Finds the lower value of the given options. For example, in the statement a = 4.lesser(3) 3 has a lower value than 4, which means that the value of a would be set to 3, but if the statement had been a = 4.lesser(5) 4 has a lower value than 5, which means that the value of a would be set to 4. - reject: Removes elements from a collection if they meet certain requirements. For example, you can derive an array of odd numbers from an original array of numbers 1 through 10 by rejecting all elements that are even (or divisible by 2). - find_all: Finds all values that satisfy specific requirements. For example, you can find all elements of a collection that are divisible by 2 or find all objects that have intersected with another object. - abs: Returns the absolute value. For example, the command (-30).abs would return 30 as a result. - map: Ruby method used to transform data; used in arrays, hashes, and collections. Can be used to perform an action on every element of a collection, such as multiplying each element by 2 or declaring every element as a new entity. Reminders: - args.inputs.keyboard.KEY: Determines if a key has been pressed. For more information about the keyboard, take a look at mygame/documentation/06-keyboard.md. - ARRAY#intersect_rect?: Returns true or false depending on if the two rectangles intersect. - args.outputs.solids: An array. The values generate a solid. The parameters are [X, Y, WIDTH, HEIGHT, RED, GREEN, BLUE] For more information about solids, go to mygame/documentation/03-solids-and-borders.md. =end # Calls methods needed for game to run properly def tick args tick_instructions args, "Use LEFT and RIGHT arrow keys to move and SPACE to jump." defaults args render args calc args input args end # sets default values and creates empty collections # initialization only happens in the first frame def defaults args fiddle args args.state.enemy.hammers ||= [] args.state.enemy.hammer_queue ||= [] args.state.tick_count = args.state.tick_count args.state.bridge_top = 128 args.state.player.x ||= 0 # initializes player's properties args.state.player.y ||= args.state.bridge_top args.state.player.w ||= 64 args.state.player.h ||= 64 args.state.player.dy ||= 0 args.state.player.dx ||= 0 args.state.enemy.x ||= 800 # initializes enemy's properties args.state.enemy.y ||= 0 args.state.enemy.w ||= 128 args.state.enemy.h ||= 128 args.state.enemy.dy ||= 0 args.state.enemy.dx ||= 0 args.state.game_over_at ||= 0 end # sets enemy, player, hammer values def fiddle args args.state.gravity = -0.3 args.state.enemy_jump_power = 10 # sets enemy values args.state.enemy_jump_interval = 60 args.state.hammer_throw_interval = 40 # sets hammer values args.state.hammer_launch_power_default = 5 args.state.hammer_launch_power_near = 2 args.state.hammer_launch_power_far = 7 args.state.hammer_upward_launch_power = 15 args.state.max_hammers_per_volley = 10 args.state.gap_between_hammers = 10 args.state.player_jump_power = 10 # sets player values args.state.player_jump_power_duration = 10 args.state.player_max_run_speed = 10 args.state.player_speed_slowdown_rate = 0.9 args.state.player_acceleration = 1 args.state.hammer_size = 32 end # outputs objects onto the screen def render args args.outputs.solids << 20.map_with_index do |i| # uses 20 squares to form bridge # sets x by multiplying 64 to index to find pixel value (places all squares side by side) # subtracts 64 from bridge_top because position is denoted by bottom left corner [i * 64, args.state.bridge_top - 64, 64, 64] end args.outputs.solids << [args.state.x, args.state.y, args.state.w, args.state.h, 255, 0, 0] args.outputs.solids << [args.state.player.x, args.state.player.y, args.state.player.w, args.state.player.h, 255, 0, 0] # outputs player onto screen (red box) args.outputs.solids << [args.state.enemy.x, args.state.enemy.y, args.state.enemy.w, args.state.enemy.h, 0, 255, 0] # outputs enemy onto screen (green box) args.outputs.solids << args.state.enemy.hammers # outputs enemy's hammers onto screen end # Performs calculations to move objects on the screen def calc args # Since velocity is the change in position, the change in x increases by dx. Same with y and dy. args.state.player.x += args.state.player.dx args.state.player.y += args.state.player.dy # Since acceleration is the change in velocity, the change in y (dy) increases every frame args.state.player.dy += args.state.gravity # player's y position is either current y position or y position of top of # bridge, whichever has a greater value # ensures that the player never goes below the bridge args.state.player.y = args.state.player.y.greater(args.state.bridge_top) # player's x position is either the current x position or 0, whichever has a greater value # ensures that the player doesn't go too far left (out of the screen's scope) args.state.player.x = args.state.player.x.greater(0) # player is not falling if it is located on the top of the bridge args.state.player.falling = false if args.state.player.y == args.state.bridge_top args.state.player.rect = [args.state.player.x, args.state.player.y, args.state.player.h, args.state.player.w] # sets definition for player args.state.enemy.x += args.state.enemy.dx # velocity; change in x increases by dx args.state.enemy.y += args.state.enemy.dy # same with y and dy # ensures that the enemy never goes below the bridge args.state.enemy.y = args.state.enemy.y.greater(args.state.bridge_top) # ensures that the enemy never goes too far left (outside the screen's scope) args.state.enemy.x = args.state.enemy.x.greater(0) # objects that go up must come down because of gravity args.state.enemy.dy += args.state.gravity args.state.enemy.y = args.state.enemy.y.greater(args.state.bridge_top) #sets definition of enemy args.state.enemy.rect = [args.state.enemy.x, args.state.enemy.y, args.state.enemy.h, args.state.enemy.w] if args.state.enemy.y == args.state.bridge_top # if enemy is located on the top of the bridge args.state.enemy.dy = 0 # there is no change in y end # if 60 frames have passed and the enemy is not moving vertically if args.state.tick_count.mod_zero?(args.state.enemy_jump_interval) && args.state.enemy.dy == 0 args.state.enemy.dy = args.state.enemy_jump_power # the enemy jumps up end # if 40 frames have passed or 5 frames have passed since the game ended if args.state.tick_count.mod_zero?(args.state.hammer_throw_interval) || args.state.game_over_at.elapsed_time == 5 # rand will return a number greater than or equal to 0 and less than given variable's value (since max is excluded) # that is why we're adding 1, to include the max possibility volley_dx = (rand(args.state.hammer_launch_power_default) + 1) * -1 # horizontal movement (follow order of operations) # if the horizontal distance between the player and enemy is less than 128 pixels if (args.state.player.x - args.state.enemy.x).abs < 128 # the change in x won't be that great since the enemy and player are closer to each other volley_dx = (rand(args.state.hammer_launch_power_near) + 1) * -1 end # if the horizontal distance between the player and enemy is greater than 300 pixels if (args.state.player.x - args.state.enemy.x).abs > 300 # change in x will be more drastic since player and enemy are so far apart volley_dx = (rand(args.state.hammer_launch_power_far) + 1) * -1 # more drastic change end (rand(args.state.max_hammers_per_volley) + 1).map_with_index do |i| args.state.enemy.hammer_queue << { # stores hammer values in a hash x: args.state.enemy.x, w: args.state.hammer_size, h: args.state.hammer_size, dx: volley_dx, # change in horizontal position # multiplication operator takes precedence over addition operator throw_at: args.state.tick_count + i * args.state.gap_between_hammers } end end # add elements from hammer_queue collection to the hammers collection by # finding all hammers that were thrown before the current frame (have already been thrown) args.state.enemy.hammers += args.state.enemy.hammer_queue.find_all do |h| h[:throw_at] < args.state.tick_count end args.state.enemy.hammers.each do |h| # sets values for all hammers in collection h[:y] ||= args.state.enemy.y + 130 h[:dy] ||= args.state.hammer_upward_launch_power h[:dy] += args.state.gravity # acceleration is change in gravity h[:x] += h[:dx] # incremented by change in position h[:y] += h[:dy] h[:rect] = [h[:x], h[:y], h[:w], h[:h]] # sets definition of hammer's rect end # reject hammers that have been thrown before current frame (have already been thrown) args.state.enemy.hammer_queue = args.state.enemy.hammer_queue.reject do |h| h[:throw_at] < args.state.tick_count end # any hammers with a y position less than 0 are rejected from the hammers collection # since they have gone too far down (outside the scope's screen) args.state.enemy.hammers = args.state.enemy.hammers.reject { |h| h[:y] < 0 } # if there are any hammers that intersect with (or hit) the player, # the reset_player method is called (so the game can start over) if args.state.enemy.hammers.any? { |h| h[:rect].intersect_rect?(args.state.player.rect) } reset_player args end # if the enemy's rect intersects with (or hits) the player, # the reset_player method is called (so the game can start over) if args.state.enemy.rect.intersect_rect? args.state.player.rect reset_player args end end # Resets the player by changing its properties back to the values they had at initialization def reset_player args args.state.player.x = 0 args.state.player.y = args.state.bridge_top args.state.player.dy = 0 args.state.player.dx = 0 args.state.enemy.hammers.clear # empties hammer collection args.state.enemy.hammer_queue.clear # empties hammer_queue args.state.game_over_at = args.state.tick_count # game_over_at set to current frame (or passage of time) end # Processes input from the user to move the player def input args if args.inputs.keyboard.space # if the user presses the space bar args.state.player.jumped_at ||= args.state.tick_count # jumped_at is set to current frame # if the time that has passed since the jump is less than the player's jump duration and # the player is not falling if args.state.player.jumped_at.elapsed_time < args.state.player_jump_power_duration && !args.state.player.falling args.state.player.dy = args.state.player_jump_power # change in y is set to power of player's jump end end # if the space bar is in the "up" state (or not being pressed down) if args.inputs.keyboard.key_up.space args.state.player.jumped_at = nil # jumped_at is empty args.state.player.falling = true # the player is falling end if args.inputs.keyboard.left # if left key is pressed args.state.player.dx -= args.state.player_acceleration # dx decreases by acceleration (player goes left) # dx is either set to current dx or the negative max run speed (which would be -10), # whichever has a greater value args.state.player.dx = args.state.player.dx.greater(-args.state.player_max_run_speed) elsif args.inputs.keyboard.right # if right key is pressed args.state.player.dx += args.state.player_acceleration # dx increases by acceleration (player goes right) # dx is either set to current dx or max run speed (which would be 10), # whichever has a lesser value args.state.player.dx = args.state.player.dx.lesser(args.state.player_max_run_speed) else args.state.player.dx *= args.state.player_speed_slowdown_rate # dx is scaled down end end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.space || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Physics And Collisions - Entities - main.rb
# ./samples/04_physics_and_collisions/03_entities/app/main.rb =begin Reminders: - map: Ruby method used to transform data; used in arrays, hashes, and collections. Can be used to perform an action on every element of a collection, such as multiplying each element by 2 or declaring every element as a new entity. - reject: Removes elements from a collection if they meet certain requirements. For example, you can derive an array of odd numbers from an original array of numbers 1 through 10 by rejecting all elements that are even (or divisible by 2). - args.state.new_entity: Used when we want to create a new object, like a sprite or button. In this sample app, new_entity is used to define the properties of enemies and bullets. (Remember, you can use state to define ANY property and it will be retained across frames.) - args.outputs.labels: An array. The values generate a label on the screen. The parameters are [X, Y, TEXT, SIZE, ALIGN, RED, GREEN, BLUE, ALPHA, FONT STYLE] - ARRAY#intersect_rect?: Returns true or false depending on if the two rectangles intersect. - args.inputs.mouse.click.point.(x|y): The x and y location of the mouse. =end # This sample app shows enemies that contain an id value and the time they were created. # These enemies can be removed by shooting at them with bullets. # Calls all methods necessary for the game to function properly. def tick args tick_instructions args, "Sample app shows how to use args.state.new_entity along with collisions. CLICK to shoot a bullet." defaults args render args calc args process_inputs args end # Sets default values # Enemies and bullets start off as empty collections def defaults args args.state.enemies ||= [] args.state.bullets ||= [] end # Provides each enemy in enemies collection with rectangular border, # as well as a label showing id and when they were created def render args # When you're calling a method that takes no arguments, you can use this & syntax on map. # Numbers are being added to x and y in order to keep the text within the enemy's borders. args.outputs.borders << args.state.enemies.map(&:rect) args.outputs.labels << args.state.enemies.flat_map do |enemy| [ [enemy.x + 4, enemy.y + 29, "id: #{enemy.entity_id}", -3, 0], [enemy.x + 4, enemy.y + 17, "created_at: #{enemy.created_at}", -3, 0] # frame enemy was created ] end # Outputs bullets in bullets collection as rectangular solids args.outputs.solids << args.state.bullets.map(&:rect) end # Calls all methods necessary for performing calculations def calc args add_new_enemies_if_needed args move_bullets args calculate_collisions args remove_bullets_of_screen args end # Adds enemies to the enemies collection and sets their values def add_new_enemies_if_needed args return if args.state.enemies.length >= 10 # if 10 or more enemies, enemies are not added return unless args.state.bullets.length == 0 # if user has not yet shot bullet, no enemies are added args.state.enemies += (10 - args.state.enemies.length).map do # adds enemies so there are 10 total args.state.new_entity(:enemy) do |e| # each enemy is declared as a new entity e.x = 640 + 500 * rand # each enemy is given random position on screen e.y = 600 * rand + 50 e.rect = [e.x, e.y, 130, 30] # sets definition for enemy's rect end end end # Moves bullets across screen # Sets definition of the bullets def move_bullets args args.state.bullets.each do |bullet| # perform action on each bullet in collection bullet.x += bullet.speed # increment x by speed (bullets fly horizontally across screen) # By randomizing the value that increments bullet.y, the bullet does not fly straight up and out # of the scope of the screen. Try removing what follows bullet.speed, or changing 0.25 to 1.25 to # see what happens to the bullet's movement. bullet.y += bullet.speed.*(0.25).randomize(:ratio, :sign) bullet.rect = [bullet.x, bullet.y, bullet.size, bullet.size] # sets definition of bullet's rect end end # Determines if a bullet hits an enemy def calculate_collisions args args.state.bullets.each do |bullet| # perform action on every bullet and enemy in collections args.state.enemies.each do |enemy| # if bullet has not exploded yet and the bullet hits an enemy if !bullet.exploded && bullet.rect.intersect_rect?(enemy.rect) bullet.exploded = true # bullet explodes enemy.dead = true # enemy is killed end end end # All exploded bullets are rejected or removed from the bullets collection # and any dead enemy is rejected from the enemies collection. args.state.bullets = args.state.bullets.reject(&:exploded) args.state.enemies = args.state.enemies.reject(&:dead) end # Bullets are rejected from bullets collection once their position exceeds the width of screen def remove_bullets_of_screen args args.state.bullets = args.state.bullets.reject { |bullet| bullet.x > 1280 } # screen width is 1280 end # Calls fire_bullet method def process_inputs args fire_bullet args end # Once mouse is clicked by the user to fire a bullet, a new bullet is added to bullets collection def fire_bullet args return unless args.inputs.mouse.click # return unless mouse is clicked args.state.bullets << args.state.new_entity(:bullet) do |bullet| # new bullet is declared a new entity bullet.y = args.inputs.mouse.click.point.y # set to the y value of where the mouse was clicked bullet.x = 0 # starts on the left side of the screen bullet.size = 10 bullet.speed = 10 * rand + 2 # speed of a bullet is randomized bullet.rect = [bullet.x, bullet.y, bullet.size, bullet.size] # definition is set end end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.space || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Physics And Collisions - Box Collision - main.rb
# ./samples/04_physics_and_collisions/04_box_collision/app/main.rb =begin APIs listing that haven't been encountered in previous sample apps: - first: Returns the first element of the array. For example, if we have an array numbers = [1, 2, 3, 4, 5] and we call first by saying numbers.first the number 1 will be returned because it is the first element of the numbers array. - num1.idiv(num2): Divides two numbers and returns an integer. For example, 16.idiv(3) = 5, because 16 / 3 is 5.33333 returned as an integer. 16.idiv(4) = 4, because 16 / 4 is 4 and already has no decimal. Reminders: - find_all: Finds all values that satisfy specific requirements. - ARRAY#intersect_rect?: An array with at least four values is considered a rect. The intersect_rect? function returns true or false depending on if the two rectangles intersect. - reject: Removes elements from a collection if they meet certain requirements. =end # This sample app allows users to create tiles and place them anywhere on the screen as obstacles. # The player can then move and maneuver around them. class PoorManPlatformerPhysics attr_accessor :grid, :inputs, :state, :outputs # Calls all methods necessary for the app to run successfully. def tick defaults render calc process_inputs end # Sets default values for variables. # The ||= sign means that the variable will only be set to the value following the = sign if the value has # not already been set before. Intialization happens only in the first frame. def defaults state.tile_size = 64 state.gravity = -0.2 state.previous_tile_size ||= state.tile_size state.x ||= 0 state.y ||= 800 state.dy ||= 0 state.dx ||= 0 state.world ||= [] state.world_lookup ||= {} state.world_collision_rects ||= [] end # Outputs solids and borders of different colors for the world and collision_rects collections. def render # Sets a black background on the screen (Comment this line out and the background will become white.) # Also note that black is the default color for when no color is assigned. outputs.solids << grid.rect # The position, size, and color (white) are set for borders given to the world collection. # Try changing the color by assigning different numbers (between 0 and 255) to the last three parameters. outputs.borders << state.world.map do |x, y| [x * state.tile_size, y * state.tile_size, state.tile_size, state.tile_size, 255, 255, 255] end # The top, bottom, and sides of the borders for collision_rects are different colors. outputs.borders << state.world_collision_rects.map do |e| [ [e[:top], 0, 170, 0], # top is a shade of green [e[:bottom], 0, 100, 170], # bottom is a shade of greenish-blue [e[:left_right], 170, 0, 0], # left and right are a shade of red ] end # Sets the position, size, and color (a shade of green) of the borders of only the player's # box and outputs it. If you change the 180 to 0, the player's box will be black and you # won't be able to see it (because it will match the black background). outputs.borders << [state.x, state.y, state.tile_size, state.tile_size, 0, 180, 0] end # Calls methods needed to perform calculations. def calc calc_world_lookup calc_player end # Performs calculations on world_lookup and sets values. def calc_world_lookup # If the tile size isn't equal to the previous tile size, # the previous tile size is set to the tile size, # and world_lookup hash is set to empty. if state.tile_size != state.previous_tile_size state.previous_tile_size = state.tile_size state.world_lookup = {} # empty hash end # return if the world_lookup hash has keys (or, in other words, is not empty) # return unless the world collection has values inside of it (or is not empty) return if state.world_lookup.keys.length > 0 return unless state.world.length > 0 # Starts with an empty hash for world_lookup. # Searches through the world and finds the coordinates that exist. state.world_lookup = {} state.world.each { |x, y| state.world_lookup[[x, y]] = true } # Assigns world_collision_rects for every sprite drawn. state.world_collision_rects = state.world_lookup .keys .map do |coord_x, coord_y| s = state.tile_size # multiply by tile size so the grid coordinates; sets pixel value # don't forget that position is denoted by bottom left corner # set x = coord_x or y = coord_y and see what happens! x = s * coord_x y = s * coord_y { # The values added to x, y, and s position the world_collision_rects so they all appear # stacked (on top of world rects) but don't directly overlap. # Remove these added values and mess around with the rect placement! args: [coord_x, coord_y], left_right: [x, y + 4, s, s - 6], # hash keys and values top: [x + 4, y + 6, s - 8, s - 6], bottom: [x + 1, y - 1, s - 2, s - 8], } end end # Performs calculations to change the x and y values of the player's box. def calc_player # Since acceleration is the change in velocity, the change in y (dy) increases every frame. # What goes up must come down because of gravity. state.dy += state.gravity # Calls the calc_box_collision and calc_edge_collision methods. calc_box_collision calc_edge_collision # Since velocity is the change in position, the change in y increases by dy. Same with x and dx. state.y += state.dy state.x += state.dx # Scales dx down. state.dx *= 0.8 end # Calls methods needed to determine collisions between player and world_collision rects. def calc_box_collision return unless state.world_lookup.keys.length > 0 # return unless hash has atleast 1 key collision_floor! collision_left! collision_right! collision_ceiling! end # Finds collisions between the bottom of the player's rect and the top of a world_collision_rect. def collision_floor! return unless state.dy <= 0 # return unless player is going down or is as far down as possible player_rect = [state.x, state.y - 0.1, state.tile_size, state.tile_size] # definition of player # Goes through world_collision_rects to find all intersections between the bottom of player's rect and # the top of a world_collision_rect (hence the "-0.1" above) floor_collisions = state.world_collision_rects .find_all { |r| r[:top].intersect_rect?(player_rect, collision_tollerance) } .first return unless floor_collisions # return unless collision occurred state.y = floor_collisions[:top].top # player's y is set to the y of the top of the collided rect state.dy = 0 # if a collision occurred, the player's rect isn't moving because its path is blocked end # Finds collisions between the player's left side and the right side of a world_collision_rect. def collision_left! return unless state.dx < 0 # return unless player is moving left player_rect = [state.x - 0.1, state.y, state.tile_size, state.tile_size] # Goes through world_collision_rects to find all intersections beween the player's left side and the # right side of a world_collision_rect. left_side_collisions = state.world_collision_rects .find_all { |r| r[:left_right].intersect_rect?(player_rect, collision_tollerance) } .first return unless left_side_collisions # return unless collision occurred # player's x is set to the value of the x of the collided rect's right side state.x = left_side_collisions[:left_right].right state.dx = 0 # player isn't moving left because its path is blocked end # Finds collisions between the right side of the player and the left side of a world_collision_rect. def collision_right! return unless state.dx > 0 # return unless player is moving right player_rect = [state.x + 0.1, state.y, state.tile_size, state.tile_size] # Goes through world_collision_rects to find all intersections between the player's right side # and the left side of a world_collision_rect (hence the "+0.1" above) right_side_collisions = state.world_collision_rects .find_all { |r| r[:left_right].intersect_rect?(player_rect, collision_tollerance) } .first return unless right_side_collisions # return unless collision occurred # player's x is set to the value of the collided rect's left, minus the size of a rect # tile size is subtracted because player's position is denoted by bottom left corner state.x = right_side_collisions[:left_right].left - state.tile_size state.dx = 0 # player isn't moving right because its path is blocked end # Finds collisions between the top of the player's rect and the bottom of a world_collision_rect. def collision_ceiling! return unless state.dy > 0 # return unless player is moving up player_rect = [state.x, state.y + 0.1, state.tile_size, state.tile_size] # Goes through world_collision_rects to find intersections between the bottom of a # world_collision_rect and the top of the player's rect (hence the "+0.1" above) ceil_collisions = state.world_collision_rects .find_all { |r| r[:bottom].intersect_rect?(player_rect, collision_tollerance) } .first return unless ceil_collisions # return unless collision occurred # player's y is set to the bottom y of the rect it collided with, minus the size of a rect state.y = ceil_collisions[:bottom].y - state.tile_size state.dy = 0 # if a collision occurred, the player isn't moving up because its path is blocked end # Makes sure the player remains within the screen's dimensions. def calc_edge_collision #Ensures that the player doesn't fall below the map. if state.y < 0 state.y = 0 state.dy = 0 #Ensures that the player doesn't go too high. # Position of player is denoted by bottom left hand corner, which is why we have to subtract the # size of the player's box (so it remains visible on the screen) elsif state.y > 720 - state.tile_size # if the player's y position exceeds the height of screen state.y = 720 - state.tile_size # the player will remain as high as possible while staying on screen state.dy = 0 end # Ensures that the player remains in the horizontal range that it is supposed to. if state.x >= 1280 - state.tile_size && state.dx > 0 # if player moves too far right state.x = 1280 - state.tile_size # player will remain as right as possible while staying on screen state.dx = 0 elsif state.x <= 0 && state.dx < 0 # if player moves too far left state.x = 0 # player will remain as left as possible while remaining on screen state.dx = 0 end end # Processes input from the user on the keyboard. def process_inputs if inputs.mouse.down state.world_lookup = {} x, y = to_coord inputs.mouse.down.point # gets x, y coordinates for the grid if state.world.any? { |loc| loc == [x, y] } # checks if coordinates duplicate state.world = state.world.reject { |loc| loc == [x, y] } # erases tile space else state.world << [x, y] # If no duplicates, adds to world collection end end # Sets dx to 0 if the player lets go of arrow keys. if inputs.keyboard.key_up.right state.dx = 0 elsif inputs.keyboard.key_up.left state.dx = 0 end # Sets dx to 3 in whatever direction the player chooses. if inputs.keyboard.key_held.right # if right key is pressed state.dx = 3 elsif inputs.keyboard.key_held.left # if left key is pressed state.dx = -3 end #Sets dy to 5 to make the player ~fly~ when they press the space bar if inputs.keyboard.key_held.space state.dy = 5 end end def to_coord point # Integer divides (idiv) point.x to turn into grid # Then, you can just multiply each integer by state.tile_size later so the grid coordinates. [point.x.idiv(state.tile_size), point.y.idiv(state.tile_size)] end # Represents the tolerance for a collision between the player's rect and another rect. def collision_tollerance 0.0 end end $platformer_physics = PoorManPlatformerPhysics.new def tick args $platformer_physics.grid = args.grid $platformer_physics.inputs = args.inputs $platformer_physics.state = args.state $platformer_physics.outputs = args.outputs $platformer_physics.tick tick_instructions args, "Sample app shows platformer collisions. CLICK to place box. ARROW keys to move around. SPACE to jump." end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end
Physics And Collisions - Box Collision 2 - main.rb
# ./samples/04_physics_and_collisions/05_box_collision_2/app/main.rb =begin APIs listing that haven't been encountered in previous sample apps: - times: Performs an action a specific number of times. For example, if we said 5.times puts "Hello DragonRuby", then we'd see the words "Hello DragonRuby" printed on the console 5 times. - split: Divides a string into substrings based on a delimiter. For example, if we had a command "DragonRuby is awesome".split(" ") then the result would be ["DragonRuby", "is", "awesome"] because the words are separated by a space delimiter. - join: Opposite of split; converts each element of array to a string separated by delimiter. For example, if we had a command ["DragonRuby","is","awesome"].join(" ") then the result would be "DragonRuby is awesome". Reminders: - to_s: Returns a string representation of an object. For example, if we had 500.to_s the string "500" would be returned. Similar to to_i, which returns an integer representation of an object. - elapsed_time: How many frames have passed since the click event. - args.outputs.labels: An array. Values in the array generate labels on the screen. The parameters are: [X, Y, TEXT, SIZE, ALIGN, RED, GREEN, BLUE, ALPHA, FONT STYLE] For more information about labels, go to mygame/documentation/02-labels.md. - inputs.mouse.down: Determines whether or not the mouse is being pressed down. The position of the mouse when it is pressed down can be found using inputs.mouse.down.point.(x|y). - first: Returns the first element of the array. - num1.idiv(num2): Divides two numbers and returns an integer. - find_all: Finds all values that satisfy specific requirements. - ARRAY#intersect_rect?: Returns true or false depending on if two rectangles intersect. - reject: Removes elements from a collection if they meet certain requirements. - String interpolation: Uses #{} syntax; everything between the #{ and the } is evaluated as Ruby code, and the placeholder is replaced with its corresponding value or result. =end MAP_FILE_PATH = 'app/map.txt' # the map.txt file in the app folder contains exported map class MetroidvaniaStarter attr_accessor :grid, :inputs, :state, :outputs, :gtk # Calls methods needed to run the game properly. def tick defaults render calc process_inputs end # Sets all the default variables. # '||' states that initialization occurs only in the first frame. def defaults state.tile_size = 64 state.gravity = -0.2 state.player_width = 60 state.player_height = 64 state.collision_tolerance = 0.0 state.previous_tile_size ||= state.tile_size state.x ||= 0 state.y ||= 800 state.dy ||= 0 state.dx ||= 0 attempt_load_world_from_file state.world_lookup ||= { } state.world_collision_rects ||= [] state.mode ||= :creating # alternates between :creating and :selecting for sprite selection state.select_menu ||= [0, 720, 1280, 720] #=======================================IMPORTANT=======================================# # When adding sprites, please label them "image1.png", "image2.png", image3".png", etc. # Once you have done that, adjust "state.sprite_quantity" to how many sprites you have. #=======================================================================================# state.sprite_quantity ||= 20 # IMPORTANT TO ALTER IF SPRITES ADDED IF YOU ADD MORE SPRITES state.sprite_coords ||= [] state.banner_coords ||= [640, 680 + 720] state.sprite_selected ||= 1 state.map_saved_at ||= 0 # Sets all the cordinate values for the sprite selection screen into a grid # Displayed when 's' is pressed by player to access sprites if state.sprite_coords == [] # if sprite_coords is an empty array count = 1 temp_x = 165 # sets a starting x and y position for display temp_y = 500 + 720 state.sprite_quantity.times do # for the number of sprites you have state.sprite_coords += [[temp_x, temp_y, count]] # add element to sprite_coords array temp_x += 100 # increment temp_x count += 1 # increment count if temp_x > 1280 - (165 + 50) # if exceeding specific horizontal width on screen temp_x = 165 # a new row of sprites starts temp_y -= 75 # new row of sprites starts 75 units lower than the previous row end end end end # Places sprites def render # Sets the x, y, width, height, and image path for each sprite in the world collection. outputs.sprites << state.world.map do |x, y, sprite| [x * state.tile_size, # multiply by size so grid coordinates; pixel value of location y * state.tile_size, state.tile_size, state.tile_size, 'sprites/image' + sprite.to_s + '.png'] # uses concatenation to create unique image path end # Outputs sprite for the player by setting x, y, width, height, and image path outputs.sprites << [state.x, state.y, state.player_width, state.player_height,'sprites/player.png'] # Outputs labels as primitives in top right of the screen outputs.primitives << [920, 700, 'Press \'s\' to access sprites.', 1, 0].label outputs.primitives << [920, 675, 'Click existing sprite to delete.', 1, 0].label outputs.primitives << [920, 640, '<- and -> to move.', 1, 0].label outputs.primitives << [920, 615, 'Press and hold space to jump.', 1, 0].label outputs.primitives << [920, 580, 'Press \'e\' to export current map.', 1, 0].label # if the map is saved and less than 120 frames have passed, the label is displayed if state.map_saved_at > 0 && state.map_saved_at.elapsed_time < 120 outputs.primitives << [920, 555, 'Map has been exported!', 1, 0, 50, 100, 50].label end # If player hits 's', following appears if state.mode == :selecting # White background for sprite selection outputs.primitives << [state.select_menu, 255, 255, 255].solid # Select tile label at the top of the screen outputs.primitives << [state.banner_coords.x, state.banner_coords.y, "Select Sprite (sprites located in \"sprites\" folder)", 10, 1, 0, 0, 0, 255].label # Places sprites in locations calculated in the defaults function outputs.primitives << state.sprite_coords.map do |x, y, order| [x, y, 50, 50, 'sprites/image' + order.to_s + ".png"].sprite end end # Creates sprite following mouse to help indicate which sprite you have selected # 10 is subtracted from the mouse's x position so that the sprite is not covered by the mouse icon outputs.primitives << [inputs.mouse.position.x - 10, inputs.mouse.position.y, 10, 10, 'sprites/image' + state.sprite_selected.to_s + ".png"].sprite end # Calls methods that perform calculations def calc calc_in_game calc_sprite_selection end # Calls methods that perform calculations (if in creating mode) def calc_in_game return unless state.mode == :creating calc_world_lookup calc_player end def calc_world_lookup # If the tile size isn't equal to the previous tile size, # the previous tile size is set to the tile size, # and world_lookup hash is set to empty. if state.tile_size != state.previous_tile_size state.previous_tile_size = state.tile_size state.world_lookup = {} end # return if world_lookup is not empty or if world is empty return if state.world_lookup.keys.length > 0 return unless state.world.length > 0 # Searches through the world and finds the coordinates that exist state.world_lookup = {} state.world.each { |x, y| state.world_lookup[[x, y]] = true } # Assigns collision rects for every sprite drawn state.world_collision_rects = state.world_lookup .keys .map do |coord_x, coord_y| s = state.tile_size # Multiplying by s (the size of a tile) ensures that the rect is # placed exactly where you want it to be placed (causes grid to coordinate) # How many pixels horizontally across and vertically up and down x = s * coord_x y = s * coord_y { args: [coord_x, coord_y], left_right: [x, y + 4, s, s - 6], # hash keys and values top: [x + 4, y + 6, s - 8, s - 6], bottom: [x + 1, y - 1, s - 2, s - 8], } end end # Calculates movement of player and calls methods that perform collision calculations def calc_player state.dy += state.gravity # what goes up must come down because of gravity calc_box_collision calc_edge_collision state.y += state.dy # Since velocity is the change in position, the change in y increases by dy state.x += state.dx # Ditto line above but dx and x state.dx *= 0.8 # Scales dx down end # Calls methods that determine whether the player collides with any world_collision_rects. def calc_box_collision return unless state.world_lookup.keys.length > 0 # return unless hash has atleast 1 key collision_floor collision_left collision_right collision_ceiling end # Finds collisions between the bottom of the player's rect and the top of a world_collision_rect. def collision_floor return unless state.dy <= 0 # return unless player is going down or is as far down as possible player_rect = [state.x, next_y, state.tile_size, state.tile_size] # definition of player # Runs through all the sprites on the field and finds all intersections between player's # bottom and the top of a rect. floor_collisions = state.world_collision_rects .find_all { |r| r[:top].intersect_rect?(player_rect, state.collision_tolerance) } .first return unless floor_collisions # performs following changes if a collision has occurred state.y = floor_collisions[:top].top # y of player is set to the y of the colliding rect's top state.dy = 0 # no change in y because the player's path is blocked end # Finds collisions between the player's left side and the right side of a world_collision_rect. def collision_left return unless state.dx < 0 # return unless player is moving left player_rect = [next_x, state.y, state.tile_size, state.tile_size] # Runs through all the sprites on the field and finds all intersections between the player's left side # and the right side of a rect. left_side_collisions = state.world_collision_rects .find_all { |r| r[:left_right].intersect_rect?(player_rect, state.collision_tolerance) } .first return unless left_side_collisions # return unless collision occurred state.x = left_side_collisions[:left_right].right # sets player's x to the x of the colliding rect's right side state.dx = 0 # no change in x because the player's path is blocked end # Finds collisions between the right side of the player and the left side of a world_collision_rect. def collision_right return unless state.dx > 0 # return unless player is moving right player_rect = [next_x, state.y, state.tile_size, state.tile_size] # Runs through all the sprites on the field and finds all intersections between the player's # right side and the left side of a rect. right_side_collisions = state.world_collision_rects .find_all { |r| r[:left_right].intersect_rect?(player_rect, state.collision_tolerance) } .first return unless right_side_collisions # return unless collision occurred state.x = right_side_collisions[:left_right].left - state.tile_size # player's x is set to the x of colliding rect's left side (minus tile size since x is the player's bottom left corner) state.dx = 0 # no change in x because the player's path is blocked end # Finds collisions between the top of the player's rect and the bottom of a world_collision_rect. def collision_ceiling return unless state.dy > 0 # return unless player is moving up player_rect = [state.x, next_y, state.player_width, state.player_height] # Runs through all the sprites on the field and finds all intersections between the player's top # and the bottom of a rect. ceil_collisions = state.world_collision_rects .find_all { |r| r[:bottom].intersect_rect?(player_rect, state.collision_tolerance) } .first return unless ceil_collisions # return unless collision occurred state.y = ceil_collisions[:bottom].y - state.tile_size # player's y is set to the y of the colliding rect's bottom (minus tile size) state.dy = 0 # no change in y because the player's path is blocked end # Makes sure the player remains within the screen's dimensions. def calc_edge_collision # Ensures that player doesn't fall below the map if next_y < 0 && state.dy < 0 # if player is moving down and is about to fall (next_y) below the map's scope state.y = 0 # 0 is the lowest the player can be while staying on the screen state.dy = 0 # Ensures player doesn't go insanely high elsif next_y > 720 - state.tile_size && state.dy > 0 # if player is moving up, about to exceed map's scope state.y = 720 - state.tile_size # if we don't subtract tile_size, we won't be able to see the player on the screen state.dy = 0 end # Ensures that player remains in the horizontal range its supposed to if state.x >= 1280 - state.tile_size && state.dx > 0 # if the player is moving too far right state.x = 1280 - state.tile_size # farthest right the player can be while remaining in the screen's scope state.dx = 0 elsif state.x <= 0 && state.dx < 0 # if the player is moving too far left state.x = 0 # farthest left the player can be while remaining in the screen's scope state.dx = 0 end end def calc_sprite_selection # Does the transition to bring down the select sprite screen if state.mode == :selecting && state.select_menu.y != 0 state.select_menu.y = 0 # sets y position of select menu (shown when 's' is pressed) state.banner_coords.y = 680 # sets y position of Select Sprite banner state.sprite_coords = state.sprite_coords.map do |x, y, w, h| [x, y - 720, w, h] # sets definition of sprites (change '-' to '+' and the sprites can't be seen) end end # Does the transition to leave the select sprite screen if state.mode == :creating && state.select_menu.y != 720 state.select_menu.y = 720 # sets y position of select menu (menu is retreated back up) state.banner_coords.y = 1000 # sets y position of Select Sprite banner state.sprite_coords = state.sprite_coords.map do |x, y, w, h| [x, y + 720, w, h] # sets definition of all elements in collection end end end def process_inputs # If the state.mode is back and if the menu has retreated back up # call methods that process user inputs if state.mode == :creating process_inputs_player_movement process_inputs_place_tile end # For each sprite_coordinate added, check what sprite was selected if state.mode == :selecting state.sprite_coords.map do |x, y, order| # goes through all sprites in collection # checks that a specific sprite was pressed based on x, y position if inputs.mouse.down && # the && (and) sign means ALL statements must be true for the evaluation to be true inputs.mouse.down.point.x >= x && # x is greater than or equal to sprite's x and inputs.mouse.down.point.x <= x + 50 && # x is less than or equal to 50 pixels to the right inputs.mouse.down.point.y >= y && # y is greater than or equal to sprite's y inputs.mouse.down.point.y <= y + 50 # y is less than or equal to 50 pixels up state.sprite_selected = order # sprite is chosen end end end inputs_export_stage process_inputs_show_available_sprites end # Moves the player based on the keys they press on their keyboard def process_inputs_player_movement # Sets dx to 0 if the player lets go of arrow keys (player won't move left or right) if inputs.keyboard.key_up.right state.dx = 0 elsif inputs.keyboard.key_up.left state.dx = 0 end # Sets dx to 3 in whatever direction the player chooses when they hold down (or press) the left or right keys if inputs.keyboard.key_held.right state.dx = 3 elsif inputs.keyboard.key_held.left state.dx = -3 end # Sets dy to 5 to make the player ~fly~ when they press the space bar on their keyboard if inputs.keyboard.key_held.space state.dy = 5 end end # Adds tile in the place the user holds down the mouse def process_inputs_place_tile if inputs.mouse.down # if mouse is pressed state.world_lookup = {} x, y = to_coord inputs.mouse.down.point # gets x, y coordinates for the grid # Checks if any coordinates duplicate (already exist in world) if state.world.any? { |existing_x, existing_y, n| existing_x == x && existing_y == y } #erases existing tile space by rejecting them from world state.world = state.world.reject do |existing_x, existing_y, n| existing_x == x && existing_y == y end else state.world << [x, y, state.sprite_selected] # If no duplicates, add the sprite end end end # Stores/exports world collection's info (coordinates, sprite number) into a file def inputs_export_stage if inputs.keyboard.key_down.e # if "e" is pressed export_string = state.world.map do |x, y, sprite_number| # stores world info in a string "#{x},#{y},#{sprite_number}" # using string interpolation end gtk.write_file(MAP_FILE_PATH, export_string.join("\n")) # writes string into a file state.map_saved_at = state.tick_count # frame number (passage of time) when the map was saved end end def process_inputs_show_available_sprites # Based on keyboard input, the entity (:creating and :selecting) switch if inputs.keyboard.key_held.s && state.mode == :creating # if "s" is pressed and currently creating state.mode = :selecting # will change to selecting inputs.keyboard.clear # VERY IMPORTANT! If not present, it'll flicker between on and off elsif inputs.keyboard.key_held.s && state.mode == :selecting # if "s" is pressed and currently selecting state.mode = :creating # will change to creating inputs.keyboard.clear # VERY IMPORTANT! If not present, it'll flicker between on and off end end # Loads the world collection by reading from the map.txt file in the app folder def attempt_load_world_from_file return if state.world # return if the world collection is already populated state.world ||= [] # initialized as an empty collection exported_world = gtk.read_file(MAP_FILE_PATH) # reads the file using the path mentioned at top of code return unless exported_world # return unless the file read was successful state.world = exported_world.each_line.map do |l| # perform action on each line of exported_world l.split(',').map(&:to_i) # calls split using ',' as a delimiter, and invokes .map on the collection, # calling to_i (converts to integers) on each element end end # Adds the change in y to y to determine the next y position of the player. def next_y state.y + state.dy end # Determines next x position of player def next_x if state.dx < 0 # if the player moves left return state.x - (state.tile_size - state.player_width) # subtracts since the change in x is negative (player is moving left) else return state.x + (state.tile_size - state.player_width) # adds since the change in x is positive (player is moving right) end end def to_coord point # Integer divides (idiv) point.x to turn into grid # Then, you can just multiply each integer by state.tile_size # later and huzzah. Grid coordinates [point.x.idiv(state.tile_size), point.y.idiv(state.tile_size)] end end $metroidvania_starter = MetroidvaniaStarter.new def tick args $metroidvania_starter.grid = args.grid $metroidvania_starter.inputs = args.inputs $metroidvania_starter.state = args.state $metroidvania_starter.outputs = args.outputs $metroidvania_starter.gtk = args.gtk $metroidvania_starter.tick end
Physics And Collisions - Box Collision 3 - main.rb
# ./samples/04_physics_and_collisions/06_box_collision_3/app/main.rb class Game attr_gtk def tick defaults render input_edit_map input_player calc_player end def defaults state.gravity = -0.4 state.drag = 0.15 state.tile_size = 32 state.player.size = 16 state.player.jump_power = 12 state.tiles ||= [] state.player.y ||= 800 state.player.x ||= 100 state.player.dy ||= 0 state.player.dx ||= 0 state.player.jumped_down_at ||= 0 state.player.jumped_at ||= 0 calc_player_rect if !state.player.rect end def render outputs.labels << [10, 10.from_top, "tile: click to add a tile, hold X key and click to delete a tile."] outputs.labels << [10, 35.from_top, "move: use left and right to move, space to jump, down and space to jump down."] outputs.labels << [10, 55.from_top, " You can jump through or jump down through tiles with a height of 1."] outputs.background_color = [80, 80, 80] outputs.sprites << tiles.map(&:sprite) outputs.sprites << (player.rect.merge path: 'sprites/square/green.png') mouse_overlay = { x: (inputs.mouse.x.ifloor state.tile_size), y: (inputs.mouse.y.ifloor state.tile_size), w: state.tile_size, h: state.tile_size, a: 100 } mouse_overlay = mouse_overlay.merge r: 255 if state.delete_mode if state.mouse_held outputs.primitives << mouse_overlay.border else outputs.primitives << mouse_overlay.solid end end def input_edit_map state.mouse_held = true if inputs.mouse.down state.mouse_held = false if inputs.mouse.up if inputs.keyboard.x state.delete_mode = true elsif inputs.keyboard.key_up.x state.delete_mode = false end return unless state.mouse_held ordinal = { x: (inputs.mouse.x.idiv state.tile_size), y: (inputs.mouse.y.idiv state.tile_size) } found = find_tile ordinal if !found && !state.delete_mode tiles << (state.new_entity :tile, ordinal) recompute_tiles elsif found && state.delete_mode tiles.delete found recompute_tiles end end def input_player player.dx += inputs.left_right if inputs.keyboard.key_down.space && inputs.keyboard.down player.dy = player.jump_power * -1 player.jumped_at = 0 player.jumped_down_at = state.tick_count elsif inputs.keyboard.key_down.space player.dy = player.jump_power player.jumped_at = state.tick_count player.jumped_down_at = 0 end end def calc_player calc_player_rect calc_below calc_left calc_right calc_above calc_player_dy calc_player_dx reset_player if player_off_stage? end def calc_player_rect player.rect = current_player_rect player.next_rect = player.rect.merge x: player.x + player.dx, y: player.y + player.dy player.prev_rect = player.rect.merge x: player.x - player.dx, y: player.y - player.dy end def calc_below return unless player.dy <= 0 tiles_below = find_tiles { |t| t.rect.top <= player.y } collision = find_colliding_tile tiles_below, (player.rect.merge y: player.next_rect.y) return unless collision if collision.neighbors.b == :none && player.jumped_down_at.elapsed_time < 10 player.dy = -1 else player.y = collision.rect.y + state.tile_size player.dy = 0 end end def calc_left return unless player.dx < 0 tiles_left = find_tiles { |t| t.rect.right <= player.prev_rect.left } collision = find_colliding_tile tiles_left, (player.rect.merge x: player.next_rect.x) return unless collision player.x = collision.rect.right player.dx = 0 end def calc_right return unless player.dx > 0 tiles_right = find_tiles { |t| t.rect.left >= player.prev_rect.right } collision = find_colliding_tile tiles_right, (player.rect.merge x: player.next_rect.x) return unless collision player.x = collision.rect.left - player.rect.w player.dx = 0 end def calc_above return unless player.dy > 0 tiles_above = find_tiles { |t| t.rect.y >= player.y } collision = find_colliding_tile tiles_above, (player.rect.merge y: player.next_rect.y) return unless collision return if collision.neighbors.t == :none player.dy = 0 player.y = collision.rect.bottom - player.rect.h end def calc_player_dx player.y += player.dy player.dy += state.gravity player.dy += player.dy * state.drag ** 2 * -1 end def calc_player_dy player.dx = player.dx.clamp(-5, 5) player.dx *= 0.9 player.x += player.dx end def reset_player player.x = 100 player.y = 720 player.dy = 0 end def recompute_tiles tiles.each do |t| t.w = state.tile_size t.h = state.tile_size t.neighbors = tile_neighbors t, tiles t.rect = [t.x * state.tile_size, t.y * state.tile_size, state.tile_size, state.tile_size].rect.to_hash sprite_sub_path = t.neighbors.mask.map { |m| flip_bit m }.join("") t.sprite = { x: t.x * state.tile_size, y: t.y * state.tile_size, w: state.tile_size, h: state.tile_size, path: "sprites/tile/wall-#{sprite_sub_path}.png" } end end def flip_bit bit return 0 if bit == 1 return 1 end def player state.player end def player_off_stage? player.rect.top < grid.bottom || player.rect.right < grid.left || player.rect.left > grid.right end def current_player_rect { x: player.x, y: player.y, w: player.size, h: player.size } end def tiles state.tiles end def find_tile ordinal tiles.find { |t| t.x == ordinal.x && t.y == ordinal.y } end def find_tiles &block tiles.find_all(&block) end def find_colliding_tile tiles, target tiles.find { |t| t.rect.intersect_rect? target } end def tile_neighbors tile, other_points t = find_tile x: tile.x + 0, y: tile.y + 1 r = find_tile x: tile.x + 1, y: tile.y + 0 b = find_tile x: tile.x + 0, y: tile.y - 1 l = find_tile x: tile.x - 1, y: tile.y + 0 tile_t, tile_r, tile_b, tile_l = 0 tile_t = 1 if t tile_r = 1 if r tile_b = 1 if b tile_l = 1 if l state.new_entity :neighbors, mask: [tile_t, tile_r, tile_b, tile_l], t: t ? :some : :none, b: b ? :some : :none, l: l ? :some : :none, r: r ? :some : :none end end def tick args $game ||= Game.new $game.args = args $game.tick end
Physics And Collisions - Jump Physics - main.rb
# ./samples/04_physics_and_collisions/07_jump_physics/app/main.rb =begin Reminders: - args.state.new_entity: Used when we want to create a new object, like a sprite or button. For example, if we want to create a new button, we would declare it as a new entity and then define its properties. (Remember, you can use state to define ANY property and it will be retained across frames.) - args.outputs.solids: An array. The values generate a solid. The parameters for a solid are [X, Y, WIDTH, HEIGHT, RED, GREEN, BLUE] For more information about solids, go to mygame/documentation/03-solids-and-borders.md. - num1.greater(num2): Returns the greater value. - Hashes: Collection of unique keys and their corresponding values. The value can be found using their keys. - ARRAY#inside_rect?: Returns true or false depending on if the point is inside the rect. =end # This sample app is a game that requires the user to jump from one platform to the next. # As the player successfully clears platforms, they become smaller and move faster. class VerticalPlatformer attr_gtk # declares vertical platformer as new entity def s state.vertical_platformer ||= state.new_entity(:vertical_platformer) state.vertical_platformer end # creates a new platform using a hash def new_platform hash s.new_entity_strict(:platform, hash) # platform key end # calls methods needed for game to run properly def tick defaults render calc input end # Sets default values def defaults s.platforms ||= [ # initializes platforms collection with two platforms using hashes new_platform(x: 0, y: 0, w: 700, h: 32, dx: 1, speed: 0, rect: nil), new_platform(x: 0, y: 300, w: 700, h: 32, dx: 1, speed: 0, rect: nil), # 300 pixels higher ] s.tick_count = args.state.tick_count s.gravity = -0.3 # what goes up must come down because of gravity s.player.platforms_cleared ||= 0 # counts how many platforms the player has successfully cleared s.player.x ||= 0 # sets player values s.player.y ||= 100 s.player.w ||= 64 s.player.h ||= 64 s.player.dy ||= 0 # change in position s.player.dx ||= 0 s.player_jump_power = 15 s.player_jump_power_duration = 10 s.player_max_run_speed = 5 s.player_speed_slowdown_rate = 0.9 s.player_acceleration = 1 s.camera ||= { y: -100 } # shows view on screen (as the player moves upward, the camera does too) end # Outputs objects onto the screen def render outputs.solids << s.platforms.map do |p| # outputs platforms onto screen [p.x + 300, p.y - s.camera[:y], p.w, p.h] # add 300 to place platform in horizontal center # don't forget, position of platform is denoted by bottom left hand corner end # outputs player using hash outputs.solids << { x: s.player.x + 300, # player positioned on top of platform y: s.player.y - s.camera[:y], w: s.player.w, h: s.player.h, r: 100, # color saturation g: 100, b: 200 } end # Performs calculations def calc s.platforms.each do |p| # for each platform in the collection p.rect = [p.x, p.y, p.w, p.h] # set the definition end # sets player point by adding half the player's width to the player's x s.player.point = [s.player.x + s.player.w.half, s.player.y] # change + to - and see what happens! # search the platforms collection to find if the player's point is inside the rect of a platform collision = s.platforms.find { |p| s.player.point.inside_rect? p.rect } # if collision occurred and player is moving down (or not moving vertically at all) if collision && s.player.dy <= 0 s.player.y = collision.rect.y + collision.rect.h - 2 # player positioned on top of platform s.player.dy = 0 if s.player.dy < 0 # player stops moving vertically if !s.player.platform s.player.dx = 0 # no horizontal movement end # changes horizontal position of player by multiplying collision change in x (dx) by speed and adding it to current x s.player.x += collision.dx * collision.speed s.player.platform = collision # player is on the platform that it collided with (or landed on) if s.player.falling # if player is falling s.player.dx = 0 # no horizontal movement end s.player.falling = false s.player.jumped_at = nil else s.player.platform = nil # player is not on a platform s.player.y += s.player.dy # velocity is the change in position s.player.dy += s.gravity # acceleration is the change in velocity; what goes up must come down end s.platforms.each do |p| # for each platform in the collection p.x += p.dx * p.speed # x is incremented by product of dx and speed (causes platform to move horizontally) # changes platform's x so it moves left and right across the screen (between -300 and 300 pixels) if p.x < -300 # if platform goes too far left p.dx *= -1 # dx is scaled down p.x = -300 # as far left as possible within scope elsif p.x > (1000 - p.w) # if platform's x is greater than 300 p.dx *= -1 p.x = (1000 - p.w) # set to 300 (as far right as possible within scope) end end delta = (s.player.y - s.camera[:y] - 100) # used to position camera view if delta > -200 s.camera[:y] += delta * 0.01 # allows player to see view as they move upwards s.player.x += s.player.dx # velocity is change in position; change in x increases by dx # searches platform collection to find platforms located more than 300 pixels above the player has_platforms = s.platforms.find { |p| p.y > (s.player.y + 300) } if !has_platforms # if there are no platforms 300 pixels above the player width = 700 - (700 * (0.1 * s.player.platforms_cleared)) # the next platform is smaller than previous s.player.platforms_cleared += 1 # player successfully cleared another platform last_platform = s.platforms[-1] # platform just cleared becomes last platform # another platform is created 300 pixels above the last platform, and this # new platform has a smaller width and moves faster than all previous platforms s.platforms << new_platform(x: (700 - width) * rand, # random x position y: last_platform.y + 300, w: width, h: 32, dx: 1.randomize(:sign), # random change in x speed: 2 * s.player.platforms_cleared, rect: nil) end else s.as_hash.clear # otherwise clear the hash (no new platform is necessary) end end # Takes input from the user to move the player def input if inputs.keyboard.space # if the space bar is pressed s.player.jumped_at ||= s.tick_count # set to current frame # if the time that has passed since the jump is less than the duration of a jump (10 frames) # and the player is not falling if s.player.jumped_at.elapsed_time < s.player_jump_power_duration && !s.player.falling s.player.dy = s.player_jump_power # player jumps up end end if inputs.keyboard.key_up.space # if space bar is in "up" state s.player.falling = true # player is falling end if inputs.keyboard.left # if left key is pressed s.player.dx -= s.player_acceleration # player's position changes, decremented by acceleration s.player.dx = s.player.dx.greater(-s.player_max_run_speed) # dx is either current dx or -5, whichever is greater elsif inputs.keyboard.right # if right key is pressed s.player.dx += s.player_acceleration # player's position changes, incremented by acceleration s.player.dx = s.player.dx.lesser(s.player_max_run_speed) # dx is either current dx or 5, whichever is lesser else s.player.dx *= s.player_speed_slowdown_rate # scales dx down end end end $game = VerticalPlatformer.new def tick args $game.args = args $game.tick end
Physics And Collisions - Bouncing On Collision - ball.rb
# ./samples/04_physics_and_collisions/08_bouncing_on_collision/app/ball.rb GRAVITY = -0.08 class Ball attr_accessor :velocity, :center, :radius, :collision_enabled def initialize args #Start the ball in the top center #@x = args.grid.w / 2 #@y = args.grid.h - 20 @velocity = {x: 0, y: 0} #@width = 20 #@height = @width @radius = 20.0 / 2.0 @center = {x: (args.grid.w / 2), y: (args.grid.h)} #@left_wall = (args.state.board_width + args.grid.w / 8) #@right_wall = @left_wall + args.state.board_width @left_wall = 0 @right_wall = $args.grid.right @max_velocity = 7 @collision_enabled = true end #Move the ball according to its velocity def update args @center.x += @velocity.x @center.y += @velocity.y @velocity.y += GRAVITY alpha = 0.2 if @[email protected] <= 0 @velocity.y = (@velocity.y.abs*0.7).abs @velocity.x = (@velocity.x.abs*0.9).abs * ((@velocity.x < 0) ? -1 : 1) if @velocity.y.abs() < alpha @velocity.y=0 end if @velocity.x.abs() < alpha @velocity.x=0 end end if @center.x > [email protected]*2 @center.x = [email protected] elsif @center.x< [email protected]*2 @center.x = args.grid.right + @radius end end def wallBounds args #if @x < @left_wall || @x + @width > @right_wall #@velocity.x *= -1.1 #if @velocity.x > @max_velocity #@velocity.x = @max_velocity #elsif @velocity.x < @max_velocity * -1 #@velocity.x = @max_velocity * -1 #end #end #if @y < 0 || @y + @height > args.grid.h #@velocity.y *= -1.1 #if @velocity.y > @max_velocity #@velocity.y = @max_velocity #elsif @velocity.y < @max_velocity * -1 #@velocity.y = @max_velocity * -1 #end #end end #render the ball to the screen def draw args #args.outputs.solids << [@x, @y, @width, @height, 255, 255, 0]; args.outputs.sprites << [ @[email protected], @[email protected], @radius*2, @radius*2, "sprites/circle-white.png", 0, 255, 255, #r 0, #g 255 #b ] end end
Physics And Collisions - Bouncing On Collision - block.rb
# ./samples/04_physics_and_collisions/08_bouncing_on_collision/app/block.rb DEGREES_TO_RADIANS = Math::PI / 180 class Block def initialize(x, y, block_size, rotation) @x = x @y = y @block_size = block_size @rotation = rotation #The repel velocity? @velocity = {x: 2, y: 0} horizontal_offset = (3 * block_size) * Math.cos(rotation * DEGREES_TO_RADIANS) vertical_offset = block_size * Math.sin(rotation * DEGREES_TO_RADIANS) if rotation >= 0 theta = 90 - rotation #The line doesn't visually line up exactly with the edge of the sprite, so artificially move it a bit modifier = 5 x_offset = modifier * Math.cos(theta * DEGREES_TO_RADIANS) y_offset = modifier * Math.sin(theta * DEGREES_TO_RADIANS) @x1 = @x - x_offset @y1 = @y + y_offset @x2 = @x1 + horizontal_offset @y2 = @y1 + (vertical_offset * 3) @imaginary_line = [ @x1, @y1, @x2, @y2 ] else theta = 90 + rotation x_offset = @block_size * Math.cos(theta * DEGREES_TO_RADIANS) y_offset = @block_size * Math.sin(theta * DEGREES_TO_RADIANS) @x1 = @x + x_offset @y1 = @y + y_offset + 19 @x2 = @x1 + horizontal_offset @y2 = @y1 + (vertical_offset * 3) @imaginary_line = [ @x1, @y1, @x2, @y2 ] end end def draw args args.outputs.sprites << [ @x, @y, @block_size*3, @block_size, "sprites/square-green.png", @rotation ] args.outputs.lines << @imaginary_line args.outputs.solids << @debug_shape end def multiply_matricies end def calc args if collision? args collide args end end #Determine if the ball and block are touching def collision? args #The minimum area enclosed by the center of the ball and the 2 corners of the block #If the area ever drops below this value, we know there is a collision min_area = ((@block_size * 3) * args.state.ball.radius) / 2 #https://www.mathopenref.com/coordtrianglearea.html ax = @x1 ay = @y1 bx = @x2 by = @y2 cx = args.state.ball.center.x cy = args.state.ball.center.y current_area = (ax*(by-cy)+bx*(cy-ay)+cx*(ay-by))/2 collision = false if @rotation >= 0 if (current_area < min_area && current_area > 0 && args.state.ball.center.y > @y1 && args.state.ball.center.x < @x2) collision = true end else if (current_area < min_area && current_area > 0 && args.state.ball.center.y > @y2 && args.state.ball.center.x > @x1) collision = true end end return collision end def collide args #Slope of the block slope = (@y2 - @y1) / (@x2 - @x1) #Create a unit vector and tilt it (@rotation) number of degrees x = -Math.cos(@rotation * DEGREES_TO_RADIANS) y = Math.sin(@rotation * DEGREES_TO_RADIANS) #Find the vector that is perpendicular to the slope perpVect = { x: x, y: y } mag = (perpVect.x**2 + perpVect.y**2)**0.5 # find the magniude of the perpVect perpVect = {x: perpVect.x/(mag), y: perpVect.y/(mag)} # divide the perpVect by the magniude to make it a unit vector previousPosition = { # calculate an ESTIMATE of the previousPosition of the ball x:args.state.ball.center.x-args.state.ball.velocity.x, y:args.state.ball.center.y-args.state.ball.velocity.y } velocityMag = (args.state.ball.velocity.x**2 + args.state.ball.velocity.y**2)**0.5 # the current velocity magnitude of the ball theta_ball = Math.atan2(args.state.ball.velocity.y, args.state.ball.velocity.x) #the angle of the ball's velocity theta_repel = (180 * DEGREES_TO_RADIANS) - theta_ball + (@rotation * DEGREES_TO_RADIANS) fbx = velocityMag * Math.cos(theta_ball) #the x component of the ball's velocity fby = velocityMag * Math.sin(theta_ball) #the y component of the ball's velocity frx = velocityMag * Math.cos(theta_repel) #the x component of the repel's velocity | magnitude is set to twice of fbx fry = velocityMag * Math.sin(theta_repel) #the y component of the repel's velocity | magnitude is set to twice of fby args.state.display_value = velocityMag fsumx = fbx+frx #sum of x forces fsumy = fby+fry #sum of y forces fr = velocityMag #fr is the resulting magnitude thetaNew = Math.atan2(fsumy, fsumx) #thetaNew is the resulting angle xnew = fr*Math.cos(thetaNew) #resulting x velocity ynew = fr*Math.sin(thetaNew) #resulting y velocity dampener = 0.3 ynew *= dampener * 0.5 #If the bounce is very low, that means the ball is rolling and we don't want to dampenen the X velocity if ynew > -0.1 xnew *= dampener end #Add the sine component of gravity back in (X component) gravity_x = 4 * Math.sin(@rotation * DEGREES_TO_RADIANS) xnew += gravity_x args.state.ball.velocity.x = -xnew args.state.ball.velocity.y = -ynew #Set the position of the ball to the previous position so it doesn't warp throught the block args.state.ball.center.x = previousPosition.x args.state.ball.center.y = previousPosition.y end end
Physics And Collisions - Bouncing On Collision - cannon.rb
# ./samples/04_physics_and_collisions/08_bouncing_on_collision/app/cannon.rb class Cannon def initialize args @pointA = {x: args.grid.right/2,y: args.grid.top} @pointB = {x: args.inputs.mouse.x, y: args.inputs.mouse.y} end def update args activeBall = args.state.ball @pointB = {x: args.inputs.mouse.x, y: args.inputs.mouse.y} if args.inputs.mouse.click alpha = 0.01 activeBall.velocity.y = (@pointB.y - @pointA.y) * alpha activeBall.velocity.x = (@pointB.x - @pointA.x) * alpha activeBall.center = {x: (args.grid.w / 2), y: (args.grid.h)} end end def render args args.outputs.lines << [@pointA.x, @pointA.y, @pointB.x, @pointB.y] end end
Physics And Collisions - Bouncing On Collision - main.rb
# ./samples/04_physics_and_collisions/08_bouncing_on_collision/app/main.rb INFINITY= 10**10 require 'app/vector2d.rb' require 'app/peg.rb' require 'app/block.rb' require 'app/ball.rb' require 'app/cannon.rb' #Method to init default values def defaults args args.state.pegs ||= [] args.state.blocks ||= [] args.state.cannon ||= Cannon.new args args.state.ball ||= Ball.new args args.state.horizontal_offset ||= 0 init_pegs args init_blocks args args.state.display_value ||= "test" end begin :default_methods def init_pegs args num_horizontal_pegs = 14 num_rows = 5 return unless args.state.pegs.count < num_rows * num_horizontal_pegs block_size = 32 block_spacing = 50 total_width = num_horizontal_pegs * (block_size + block_spacing) starting_offset = (args.grid.w - total_width) / 2 + block_size for i in (0...num_rows) for j in (0...num_horizontal_pegs) row_offset = 0 if i % 2 == 0 row_offset = 20 else row_offset = -20 end args.state.pegs.append(Peg.new(j * (block_size+block_spacing) + starting_offset + row_offset, (args.grid.h - block_size * 2) - (i * block_size * 2)-90, block_size)) end end end def init_blocks args return unless args.state.blocks.count < 10 #Sprites are rotated in degrees, but the Ruby math functions work on radians radians_to_degrees = Math::PI / 180 block_size = 25 #Rotation angle (in degrees) of the blocks rotation = 30 vertical_offset = block_size * Math.sin(rotation * radians_to_degrees) horizontal_offset = (3 * block_size) * Math.cos(rotation * radians_to_degrees) center = args.grid.w / 2 for i in (0...5) #Create a ramp of blocks. Not going to be perfect because of the float to integer conversion and anisotropic to isotropic coversion args.state.blocks.append(Block.new((center + 100 + (i * horizontal_offset)).to_i, 100 + (vertical_offset * i) + (i * block_size), block_size, rotation)) args.state.blocks.append(Block.new((center - 100 - (i * horizontal_offset)).to_i, 100 + (vertical_offset * i) + (i * block_size), block_size, -rotation)) end end end #Render loop def render args args.outputs.borders << args.state.game_area render_pegs args render_blocks args args.state.cannon.render args args.state.ball.draw args end begin :render_methods #Draw the pegs in a grid pattern def render_pegs args args.state.pegs.each do |peg| peg.draw args end end def render_blocks args args.state.blocks.each do |block| block.draw args end end end #Calls all methods necessary for performing calculations def calc args args.state.pegs.each do |peg| peg.calc args end args.state.blocks.each do |block| block.calc args end args.state.ball.update args args.state.cannon.update args end begin :calc_methods end def tick args defaults args render args calc args end
Physics And Collisions - Bouncing On Collision - peg.rb
# ./samples/04_physics_and_collisions/08_bouncing_on_collision/app/peg.rb class Peg def initialize(x, y, block_size) @x = x # x cordinate of the LEFT side of the peg @y = y # y cordinate of the RIGHT side of the peg @block_size = block_size # diameter of the peg @radius = @block_size/2.0 # radius of the peg @center = { # cordinatees of the CENTER of the peg x: @[email protected]_size/2.0, y: @[email protected]_size/2.0 } @r = 255 # color of the peg @g = 0 @b = 0 @velocity = {x: 2, y: 0} end def draw args args.outputs.sprites << [ # draw the peg according to the @x, @y, @radius, and the RGB @x, @y, @radius*2.0, @radius*2.0, "sprites/circle-white.png", 0, 255, @r, #r @g, #g @b #b ] end def calc args if collisionWithBounce? args # if the is a collision with the bouncing ball collide args @r = 0 @b = 0 @g = 255 else end end # do two circles (the ball and this peg) intersect def collisionWithBounce? args squareDistance = ( # the squared distance between the ball's center and this peg's center (args.state.ball.center.x - @center.x) ** 2.0 + (args.state.ball.center.y - @center.y) ** 2.0 ) radiusSum = ( # the sum of the radius squared of the this peg and the ball (args.state.ball.radius + @radius) ** 2.0 ) # if the squareDistance is less or equal to radiusSum, then there is a radial intersection between the ball and this peg return (squareDistance <= radiusSum) end # ! The following links explain the getRepelMagnitude function ! # https://raw.githubusercontent.com/DragonRuby/dragonruby-game-toolkit-physics/master/docs/docImages/LinearCollider_4.png # https://raw.githubusercontent.com/DragonRuby/dragonruby-game-toolkit-physics/master/docs/docImages/LinearCollider_5.png # https://github.com/DragonRuby/dragonruby-game-toolkit-physics/blob/master/docs/LinearCollider.md def getRepelMagnitude (args, fbx, fby, vrx, vry, ballMag) a = fbx ; b = vrx ; c = fby d = vry ; e = ballMag if b**2 + d**2 == 0 #unexpected end x1 = (-a*b+-c*d + (e**2 * b**2 - b**2 * c**2 + 2*a*b*c*d + e**2 + d**2 - a**2 * d**2)**0.5)/(b**2 + d**2) x2 = -((a*b + c*d + (e**2 * b**2 - b**2 * c**2 + 2*a*b*c*d + e**2 * d**2 - a**2 * d**2)**0.5)/(b**2 + d**2)) err = 0.00001 o = ((fbx + x1*vrx)**2 + (fby + x1*vry)**2 ) ** 0.5 p = ((fbx + x2*vrx)**2 + (fby + x2*vry)**2 ) ** 0.5 r = 0 if (ballMag >= o-err and ballMag <= o+err) r = x1 elsif (ballMag >= p-err and ballMag <= p+err) r = x2 else #unexpected end if (args.state.ball.center.x > @center.x) return x2*-1 end return x2 #return r end #this sets the new velocity of the ball once it has collided with this peg def collide args normalOfRCCollision = [ #this is the normal of the collision in COMPONENT FORM {x: @center.x, y: @center.y}, #see https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.mathscard.co.uk%2Fonline%2Fcircle-coordinate-geometry%2F&psig=AOvVaw2GcD-e2-nJR_IUKpw3hO98&ust=1605731315521000&source=images&cd=vfe&ved=0CAIQjRxqFwoTCMjBo7e1iu0CFQAAAAAdAAAAABAD {x: args.state.ball.center.x, y: args.state.ball.center.y}, ] normalSlope = ( #normalSlope is the slope of normalOfRCCollision (normalOfRCCollision[1].y - normalOfRCCollision[0].y) / (normalOfRCCollision[1].x - normalOfRCCollision[0].x) ) slope = normalSlope**-1.0 * -1 # slope is the slope of the tangent # args.state.display_value = slope pointA = { # pointA and pointB are using the var slope to tangent in COMPONENT FORM x: args.state.ball.center.x-1, y: -(slope-args.state.ball.center.y) } pointB = { x: args.state.ball.center.x+1, y: slope+args.state.ball.center.y } perpVect = {x: pointB.x - pointA.x, y:pointB.y - pointA.y} # perpVect is to be VECTOR of the perpendicular tangent mag = (perpVect.x**2 + perpVect.y**2)**0.5 # find the magniude of the perpVect perpVect = {x: perpVect.x/(mag), y: perpVect.y/(mag)} # divide the perpVect by the magniude to make it a unit vector perpVect = {x: -perpVect.y, y: perpVect.x} # swap the x and y and multiply by -1 to make the vector perpendicular args.state.display_value = perpVect if perpVect.y > 0 #ensure perpVect points upward perpVect = {x: perpVect.x*-1, y: perpVect.y*-1} end previousPosition = { # calculate an ESTIMATE of the previousPosition of the ball x:args.state.ball.center.x-args.state.ball.velocity.x, y:args.state.ball.center.y-args.state.ball.velocity.y } yInterc = pointA.y + -slope*pointA.x if slope == INFINITY # the perpVect presently either points in the correct dirrection or it is 180 degrees off we need to correct this if previousPosition.x < pointA.x perpVect = {x: perpVect.x*-1, y: perpVect.y*-1} yInterc = -INFINITY end elsif previousPosition.y < slope*previousPosition.x + yInterc # check if ball is bellow or above the collider to determine if perpVect is - or + perpVect = {x: perpVect.x*-1, y: perpVect.y*-1} end velocityMag = # the current velocity magnitude of the ball (args.state.ball.velocity.x**2 + args.state.ball.velocity.y**2)**0.5 theta_ball= Math.atan2(args.state.ball.velocity.y,args.state.ball.velocity.x) #the angle of the ball's velocity theta_repel= Math.atan2(args.state.ball.center.y,args.state.ball.center.x) #the angle of the repelling force(perpVect) fbx = velocityMag * Math.cos(theta_ball) #the x component of the ball's velocity fby = velocityMag * Math.sin(theta_ball) #the y component of the ball's velocity repelMag = getRepelMagnitude( # the magniude of the collision vector args, fbx, fby, perpVect.x, perpVect.y, (args.state.ball.velocity.x**2 + args.state.ball.velocity.y**2)**0.5 ) frx = repelMag* Math.cos(theta_repel) #the x component of the repel's velocity | magnitude is set to twice of fbx fry = repelMag* Math.sin(theta_repel) #the y component of the repel's velocity | magnitude is set to twice of fby fsumx = fbx+frx # sum of x forces fsumy = fby+fry # sum of y forces fr = velocityMag # fr is the resulting magnitude thetaNew = Math.atan2(fsumy, fsumx) # thetaNew is the resulting angle xnew = fr*Math.cos(thetaNew) # resulting x velocity ynew = fr*Math.sin(thetaNew) # resulting y velocity if (args.state.ball.center.x >= @center.x) # this is necessary for the ball colliding on the right side of the peg xnew=xnew.abs end args.state.ball.velocity.x = xnew # set the x-velocity to the new velocity if args.state.ball.center.y > @center.y # if the ball is above the middle of the peg we need to temporarily ignore some of the gravity args.state.ball.velocity.y = ynew + GRAVITY * 0.01 else args.state.ball.velocity.y = ynew - GRAVITY * 0.01 # if the ball is bellow the middle of the peg we need to temporarily increase the power of the gravity end args.state.ball.center.x+= args.state.ball.velocity.x # update the position of the ball so it never looks like the ball is intersecting the circle args.state.ball.center.y+= args.state.ball.velocity.y end end
Physics And Collisions - Bouncing On Collision - vector2d.rb
# ./samples/04_physics_and_collisions/08_bouncing_on_collision/app/vector2d.rb class Vector2d attr_accessor :x, :y def initialize x=0, y=0 @x=x @y=y end #returns a vector multiplied by scalar x #x [float] scalar def mult x r = Vector2d.new(0,0) [email protected]*x [email protected]*x r end # vect [Vector2d] vector to copy def copy vect Vector2d.new(@x, @y) end #returns a new vector equivalent to this+vect #vect [Vector2d] vector to add to self def add vect Vector2d.new(@x+vect.x,@y+vect.y) end #returns a new vector equivalent to this-vect #vect [Vector2d] vector to subtract to self def sub vect Vector2d.new(@x-vect.c, @y-vect.y) end #return the magnitude of the vector def mag ((@x**2)+(@y**2))**0.5 end #returns a new normalize version of the vector def normalize Vector2d.new(@x/mag, @y/mag) end #TODO delet? def distABS vect ((([email protected])**2+([email protected])**2)**0.5).abs() end end
Physics And Collisions - Arbitrary Collision - ball.rb
# ./samples/04_physics_and_collisions/09_arbitrary_collision/app/ball.rb class Ball attr_accessor :velocity, :child, :parent, :number, :leastChain attr_reader :x, :y, :hypotenuse, :width, :height def initialize args, number, leastChain, parent, child #Start the ball in the top center @number = number @leastChain = leastChain @x = args.grid.w / 2 @y = args.grid.h - 20 @velocity = Vector2d.new(2, -2) @width = 10 @height = 10 @left_wall = (args.state.board_width + args.grid.w / 8) @right_wall = @left_wall + args.state.board_width @max_velocity = MAX_VELOCITY @child = child @parent = parent @past = [{x: @x, y: @y}] @next = nil end def reassignLeastChain (lc=nil) if (lc == nil) lc = @number end @leastChain = lc if (parent != nil) @parent.reassignLeastChain(lc) end end def makeLeader args if isLeader return end @parent.reassignLeastChain args.state.ballParents.push(self) @parent = nil end def isLeader return (parent == nil) end def receiveNext (p) #trace! if parent != nil @x = p[:x] @y = p[:y] @velocity = p[:velocity] #puts @x.to_s + "|" + @y.to_s + "|"[email protected]_s @past.append(p) if (@past.length >= BALL_DISTANCE) if (@child != nil) @child.receiveNext(@past[0]) @past.shift end end end end #Move the ball according to its velocity def update args if isLeader wallBounds args @x += @velocity.x @y += @velocity.y @past.append({x: @x, y: @y, velocity: @velocity}) #puts @past if (@past.length >= BALL_DISTANCE) if (@child != nil) @child.receiveNext(@past[0]) @past.shift end end else puts "unexpected" raise "unexpected" end end def wallBounds args b= false if @x < @left_wall @velocity.x = @velocity.x.abs() * 1 b=true elsif @x + @width > @right_wall @velocity.x = @velocity.x.abs() * -1 b=true end if @y < 0 @velocity.y = @velocity.y.abs() * 1 b=true elsif @y + @height > args.grid.h @velocity.y = @velocity.y.abs() * -1 b=true end mag = (@velocity.x**2.0 + @velocity.y**2.0)**0.5 if (b == true && mag < MAX_VELOCITY) @velocity.x*=1.1; @velocity.y*=1.1; end end #render the ball to the screen def draw args #update args #args.outputs.solids << [@x, @y, @width, @height, 255, 255, 0]; #args.outputs.sprits << { #x: @x, #y: @y, #w: @width, #h: @height, #path: "sprites/ball10.png" #} #args.outputs.sprites <<[@x, @y, @width, @height, "sprites/ball10.png"] args.outputs.sprites << {x: @x, y: @y, w: @width, h: @height, path:"sprites/ball10.png" } end def getDraw args #wallBounds args #update args #args.outputs.labels << [@x, @y, @number.to_s + "|" + @leastChain.to_s] return [@x, @y, @width, @height, "sprites/ball10.png"] end def getPoints args points = [ {x:@[email protected]/2, y: @y}, {x:@[email protected], y:@[email protected]/2}, {x:@[email protected]/2,y:@[email protected]}, {x:@x,y:@[email protected]/2} ] #psize = 5.0 #for p in points #args.outputs.solids << [p.x-psize/2.0, p.y-psize/2.0, psize, psize, 0, 0, 0]; #end return points end def serialize {x: @x, y:@y} end def inspect serialize.to_s end def to_s serialize.to_s end end
Physics And Collisions - Arbitrary Collision - blocks.rb
# ./samples/04_physics_and_collisions/09_arbitrary_collision/app/blocks.rb MAX_COUNT=100 def universalUpdateOne args, shape didHit = false hitters = [] #puts shape.to_s toCollide = nil for b in args.state.balls if [b.x, b.y, b.width, b.height].intersect_rect?(shape.bold) didSquare = false for s in shape.squareColliders if (s.collision?(args, b)) didSquare = true didHit = true #s.collide(args, b) toCollide = s #hitter = b hitters.append(b) end #end if end #end for if (didSquare == false) for c in shape.colliders #puts args.state.ball.velocity if c.collision?(args, b.getPoints(args),b) #c.collide args, b toCollide = c didHit = true hitters.append(b) end #end if end #end for end #end if end#end if end#end for if (didHit) shape.count=0 hitters = hitters.uniq for hitter in hitters hitter.makeLeader args #toCollide.collide(args, hitter) if shape.home == "squares" args.state.squares.delete(shape) elsif shape.home == "tshapes" args.state.tshapes.delete(shape) else shape.home == "lines" args.state.lines.delete(shape) end end #puts "HIT!" + hitter.number end end def universalUpdate args, shape #puts shape.home if (shape.count <= 1) universalUpdateOne args, shape return end didHit = false hitter = nil for b in args.state.ballParents if [b.x, b.y, b.width, b.height].intersect_rect?(shape.bold) didSquare = false for s in shape.squareColliders if (s.collision?(args, b)) didSquare = true didHit = true s.collide(args, b) hitter = b end end if (didSquare == false) for c in shape.colliders #puts args.state.ball.velocity if c.collision?(args, b.getPoints(args),b) c.collide args, b didHit = true hitter = b end end end end end if (didHit) shape.count=shape.count-1 shape.damageCount.append([(hitter.leastChain+1 - hitter.number)-1, args.state.tick_count]) end i=0 while i < shape.damageCount.length if shape.damageCount[i][0] <= 0 shape.damageCount.delete_at(i) i-=1 elsif shape.damageCount[i][1].elapsed_time > BALL_DISTANCE and shape.damageCount[i][0] > 1 shape.count-=1 shape.damageCount[i][0]-=1 shape.damageCount[i][1] = args.state.tick_count end i+=1 end end class Square attr_accessor :count, :x, :y, :home, :bold, :squareColliders, :colliders, :damageCount def initialize(args, x, y, block_size, orientation, block_offset) @x = x * block_size @y = y * block_size @block_size = block_size @block_offset = block_offset @orientation = orientation @damageCount = [] @home = 'squares' Kernel.srand() @r = rand(255) @g = rand(255) @b = rand(255) @count = rand(MAX_COUNT)+1 x_offset = (args.state.board_width + args.grid.w / 8) + @block_offset / 2 @x_adjusted = @x + x_offset @y_adjusted = @y @size_adjusted = @block_size * 2 - @block_offset hypotenuse=args.state.ball_hypotenuse @bold = [(@x_adjusted-hypotenuse/2)-1, (@y_adjusted-hypotenuse/2)-1, @size_adjusted + hypotenuse + 2, @size_adjusted + hypotenuse + 2] @points = [ {x:@x_adjusted, y:@y_adjusted}, {x:@[email protected]_adjusted, y:@y_adjusted}, {x:@[email protected]_adjusted, y:@[email protected]_adjusted}, {x:@x_adjusted, y:@[email protected]_adjusted} ] @squareColliders = [ SquareCollider.new(@points[0].x,@points[0].y,{x:-1,y:-1}), SquareCollider.new(@points[1].x-COLLISIONWIDTH,@points[1].y,{x:1,y:-1}), SquareCollider.new(@points[2].x-COLLISIONWIDTH,@points[2].y-COLLISIONWIDTH,{x:1,y:1}), SquareCollider.new(@points[3].x,@points[3].y-COLLISIONWIDTH,{x:-1,y:1}), ] @colliders = [ LinearCollider.new(@points[0],@points[1], :neg), LinearCollider.new(@points[1],@points[2], :neg), LinearCollider.new(@points[2],@points[3], :pos), LinearCollider.new(@points[0],@points[3], :pos) ] end def draw(args) #Offset the coordinates to the edge of the game area x_offset = (args.state.board_width + args.grid.w / 8) + @block_offset / 2 #args.outputs.solids << [@x + x_offset, @y, @block_size * 2 - @block_offset, @block_size * 2 - @block_offset, @r, @g, @b] args.outputs.solids <<{x: (@x + x_offset), y: (@y), w: (@block_size * 2 - @block_offset), h: (@block_size * 2 - @block_offset), r: @r , g: @g , b: @b } #args.outputs.solids << @bold.append([255,0,0]) args.outputs.labels << [@x + x_offset + (@block_size * 2 - @block_offset)/2, (@y) + (@block_size * 2 - @block_offset)/2, @count.to_s] end def update args universalUpdate args, self end end class TShape attr_accessor :count, :x, :y, :home, :bold, :squareColliders, :colliders, :damageCount def initialize(args, x, y, block_size, orientation, block_offset) @x = x * block_size @y = y * block_size @block_size = block_size @block_offset = block_offset @orientation = orientation @damageCount = [] @home = "tshapes" Kernel.srand() @r = rand(255) @g = rand(255) @b = rand(255) @count = rand(MAX_COUNT)+1 @shapePoints = getShapePoints(args) minX={x:INFINITY, y:0} minY={x:0, y:INFINITY} maxX={x:-INFINITY, y:0} maxY={x:0, y:-INFINITY} for p in @shapePoints if p.x < minX.x minX = p end if p.x > maxX.x maxX = p end if p.y < minY.y minY = p end if p.y > maxY.y maxY = p end end hypotenuse=args.state.ball_hypotenuse @bold = [(minX.x-hypotenuse/2)-1, (minY.y-hypotenuse/2)-1, -((minX.x-hypotenuse/2)-1)+(maxX.x + hypotenuse + 2), -((minY.y-hypotenuse/2)-1)+(maxY.y + hypotenuse + 2)] end def getShapePoints(args) points=[] x_offset = (args.state.board_width + args.grid.w / 8) + (@block_offset / 2) if @orientation == :right #args.outputs.solids << [@x + x_offset, @y, @block_size - @block_offset, @block_size * 3 - @block_offset, @r, @g, @b] #args.outputs.solids << [@x + x_offset, @y + @block_size, @block_size * 2, @block_size, @r, @g, @b] points = [ {x:@x + x_offset, y:@y}, {x:(@x + x_offset)+(@block_size - @block_offset), y:@y}, {x:(@x + x_offset)+(@block_size - @block_offset),y:@y + @block_size}, {x:(@x + x_offset)+ @block_size * 2,y:@y + @block_size}, {x:(@x + x_offset)+ @block_size * 2,y:@y + @[email protected]_size}, {x:(@x + x_offset)+(@block_size - @block_offset),y:@y + @[email protected]_size}, {x:(@x + x_offset)+(@block_size - @block_offset), y:@y+ @block_size * 3 - @block_offset}, {x:@x + x_offset , y:@y+ @block_size * 3 - @block_offset} ] @squareColliders = [ SquareCollider.new(points[0].x,points[0].y,{x:-1,y:-1}), SquareCollider.new(points[1].x-COLLISIONWIDTH,points[1].y,{x:1,y:-1}), SquareCollider.new(points[2].x,points[2].y-COLLISIONWIDTH,{x:1,y:-1}), SquareCollider.new(points[3].x-COLLISIONWIDTH,points[3].y,{x:1,y:-1}), SquareCollider.new(points[4].x-COLLISIONWIDTH,points[4].y-COLLISIONWIDTH,{x:1,y:1}), SquareCollider.new(points[5].x,points[5].y,{x:1,y:1}), SquareCollider.new(points[6].x-COLLISIONWIDTH,points[6].y-COLLISIONWIDTH,{x:1,y:1}), SquareCollider.new(points[7].x,points[7].y-COLLISIONWIDTH,{x:-1,y:1}), ] @colliders = [ LinearCollider.new(points[0],points[1], :neg), LinearCollider.new(points[1],points[2], :neg), LinearCollider.new(points[2],points[3], :neg), LinearCollider.new(points[3],points[4], :neg), LinearCollider.new(points[4],points[5], :pos), LinearCollider.new(points[5],points[6], :neg), LinearCollider.new(points[6],points[7], :pos), LinearCollider.new(points[0],points[7], :pos) ] elsif @orientation == :up #args.outputs.solids << [@x + x_offset, @y, @block_size * 3 - @block_offset, @block_size - @block_offset, @r, @g, @b] #args.outputs.solids << [@x + x_offset + @block_size, @y, @block_size, @block_size * 2, @r, @g, @b] points = [ {x:@x + x_offset, y:@y}, {x:(@x + x_offset)+(@block_size * 3 - @block_offset), y:@y}, {x:(@x + x_offset)+(@block_size * 3 - @block_offset), y:@y+(@block_size - @block_offset)}, {x:@x + x_offset + @block_size + @block_size, y:@y+(@block_size - @block_offset)}, {x:@x + x_offset + @block_size + @block_size, y:@[email protected]_size*2}, {x:@x + x_offset + @block_size, y:@[email protected]_size*2}, {x:@x + x_offset + @block_size, y:@y+(@block_size - @block_offset)}, {x:@x + x_offset, y:@y+(@block_size - @block_offset)} ] @squareColliders = [ SquareCollider.new(points[0].x,points[0].y,{x:-1,y:-1}), SquareCollider.new(points[1].x-COLLISIONWIDTH,points[1].y,{x:1,y:-1}), SquareCollider.new(points[2].x-COLLISIONWIDTH,points[2].y-COLLISIONWIDTH,{x:1,y:1}), SquareCollider.new(points[3].x,points[3].y,{x:1,y:1}), SquareCollider.new(points[4].x-COLLISIONWIDTH,points[4].y-COLLISIONWIDTH,{x:1,y:1}), SquareCollider.new(points[5].x,points[5].y-COLLISIONWIDTH,{x:-1,y:1}), SquareCollider.new(points[6].x-COLLISIONWIDTH,points[6].y,{x:-1,y:1}), SquareCollider.new(points[7].x,points[7].y-COLLISIONWIDTH,{x:-1,y:1}), ] @colliders = [ LinearCollider.new(points[0],points[1], :neg), LinearCollider.new(points[1],points[2], :neg), LinearCollider.new(points[2],points[3], :pos), LinearCollider.new(points[3],points[4], :neg), LinearCollider.new(points[4],points[5], :pos), LinearCollider.new(points[5],points[6], :neg), LinearCollider.new(points[6],points[7], :pos), LinearCollider.new(points[0],points[7], :pos) ] elsif @orientation == :left #args.outputs.solids << [@x + x_offset + @block_size, @y, @block_size - @block_offset, @block_size * 3 - @block_offset, @r, @g, @b] #args.outputs.solids << [@x + x_offset, @y + @block_size, @block_size * 2 - @block_offset, @block_size - @block_offset, @r, @g, @b] xh = @x + x_offset #points = [ #{x:@x + x_offset, y:@y}, #{x:(@x + x_offset)+(@block_size - @block_offset), y:@y}, #{x:(@x + x_offset)+(@block_size - @block_offset),y:@y + @block_size}, #{x:(@x + x_offset)+ @block_size * 2,y:@y + @block_size}, #{x:(@x + x_offset)+ @block_size * 2,y:@y + @[email protected]_size}, #{x:(@x + x_offset)+(@block_size - @block_offset),y:@y + @[email protected]_size}, #{x:(@x + x_offset)+(@block_size - @block_offset), y:@y+ @block_size * 3 - @block_offset}, #{x:@x + x_offset , y:@y+ @block_size * 3 - @block_offset} #] points = [ {x:@x + x_offset + @block_size, y:@y}, {x:@x + x_offset + @block_size + (@block_size - @block_offset), y:@y}, {x:@x + x_offset + @block_size + (@block_size - @block_offset),y:@[email protected]_size*3- @block_offset}, {x:@x + x_offset + @block_size, y:@[email protected]_size*3- @block_offset}, {x:@x + [email protected]_size, y:@[email protected]_size*2- @block_offset}, {x:@x + x_offset, y:@[email protected]_size*2- @block_offset}, {x:@x + x_offset, y:@[email protected]_size}, {x:@x + [email protected]_size, y:@[email protected]_size} ] @squareColliders = [ SquareCollider.new(points[0].x,points[0].y,{x:-1,y:-1}), SquareCollider.new(points[1].x-COLLISIONWIDTH,points[1].y,{x:1,y:-1}), SquareCollider.new(points[2].x-COLLISIONWIDTH,points[2].y-COLLISIONWIDTH,{x:1,y:1}), SquareCollider.new(points[3].x,points[3].y-COLLISIONWIDTH,{x:-1,y:1}), SquareCollider.new(points[4].x-COLLISIONWIDTH,points[4].y,{x:-1,y:1}), SquareCollider.new(points[5].x,points[5].y-COLLISIONWIDTH,{x:-1,y:1}), SquareCollider.new(points[6].x,points[6].y,{x:-1,y:-1}), SquareCollider.new(points[7].x-COLLISIONWIDTH,points[7].y-COLLISIONWIDTH,{x:-1,y:-1}), ] @colliders = [ LinearCollider.new(points[0],points[1], :neg), LinearCollider.new(points[1],points[2], :neg), LinearCollider.new(points[2],points[3], :pos), LinearCollider.new(points[3],points[4], :neg), LinearCollider.new(points[4],points[5], :pos), LinearCollider.new(points[5],points[6], :neg), LinearCollider.new(points[6],points[7], :neg), LinearCollider.new(points[0],points[7], :pos) ] elsif @orientation == :down #args.outputs.solids << [@x + x_offset, @y + @block_size, @block_size * 3 - @block_offset, @block_size - @block_offset, @r, @g, @b] #args.outputs.solids << [@x + x_offset + @block_size, @y, @block_size - @block_offset, @block_size * 2 - @block_offset, @r, @g, @b] points = [ {x:@x + x_offset, y:@y+(@block_size*2)[email protected]_offset}, {x:@x + x_offset+ @block_size*[email protected]_offset, y:@y+(@block_size*2)[email protected]_offset}, {x:@x + x_offset+ @block_size*[email protected]_offset, y:@y+(@block_size)}, {x:@x + x_offset+ @block_size*[email protected]_offset, y:@y+(@block_size)}, {x:@x + x_offset+ @block_size*[email protected]_offset, y:@y},# {x:@x + x_offset+ @block_size, y:@y},# {x:@x + x_offset + @block_size, y:@y+(@block_size)}, {x:@x + x_offset, y:@y+(@block_size)} ] @squareColliders = [ SquareCollider.new(points[0].x,points[0].y-COLLISIONWIDTH,{x:-1,y:1}), SquareCollider.new(points[1].x-COLLISIONWIDTH,points[1].y-COLLISIONWIDTH,{x:1,y:1}), SquareCollider.new(points[2].x-COLLISIONWIDTH,points[2].y,{x:1,y:-1}), SquareCollider.new(points[3].x,points[3].y-COLLISIONWIDTH,{x:1,y:-1}), SquareCollider.new(points[4].x-COLLISIONWIDTH,points[4].y,{x:1,y:-1}), SquareCollider.new(points[5].x,points[5].y,{x:-1,y:-1}), SquareCollider.new(points[6].x-COLLISIONWIDTH,points[6].y-COLLISIONWIDTH,{x:-1,y:-1}), SquareCollider.new(points[7].x,points[7].y,{x:-1,y:-1}), ] @colliders = [ LinearCollider.new(points[0],points[1], :pos), LinearCollider.new(points[1],points[2], :pos), LinearCollider.new(points[2],points[3], :neg), LinearCollider.new(points[3],points[4], :pos), LinearCollider.new(points[4],points[5], :neg), LinearCollider.new(points[5],points[6], :pos), LinearCollider.new(points[6],points[7], :neg), LinearCollider.new(points[0],points[7], :neg) ] end return points end def draw(args) #Offset the coordinates to the edge of the game area x_offset = (args.state.board_width + args.grid.w / 8) + (@block_offset / 2) if @orientation == :right #args.outputs.solids << [@x + x_offset, @y, @block_size - @block_offset, @block_size * 3 - @block_offset, @r, @g, @b] args.outputs.solids << {x: (@x + x_offset), y: @y, w: @block_size - @block_offset, h: (@block_size * 3 - @block_offset), r: @r , g: @g, b: @b} #args.outputs.solids << [@x + x_offset, @y + @block_size, @block_size * 2, @block_size, @r, @g, @b] args.outputs.solids << {x: (@x + x_offset), y: (@y + @block_size), w: (@block_size * 2), h: (@block_size), r: @r , g: @g, b: @b } elsif @orientation == :up #args.outputs.solids << [@x + x_offset, @y, @block_size * 3 - @block_offset, @block_size - @block_offset, @r, @g, @b] args.outputs.solids << {x: (@x + x_offset), y: (@y), w: (@block_size * 3 - @block_offset), h: (@block_size - @block_offset), r: @r , g: @g, b: @b} #args.outputs.solids << [@x + x_offset + @block_size, @y, @block_size, @block_size * 2, @r, @g, @b] args.outputs.solids << {x: (@x + x_offset + @block_size), y: (@y), w: (@block_size), h: (@block_size * 2), r: @r , g: @g, b: @b} elsif @orientation == :left #args.outputs.solids << [@x + x_offset + @block_size, @y, @block_size - @block_offset, @block_size * 3 - @block_offset, @r, @g, @b] args.outputs.solids << {x: (@x + x_offset + @block_size), y: (@y), w: (@block_size - @block_offset), h: (@block_size * 3 - @block_offset), r: @r , g: @g, b: @b} #args.outputs.solids << [@x + x_offset, @y + @block_size, @block_size * 2 - @block_offset, @block_size - @block_offset, @r, @g, @b] args.outputs.solids << {x: (@x + x_offset), y: (@y + @block_size), w: (@block_size * 2 - @block_offset), h: (@block_size - @block_offset), r: @r , g: @g, b: @b} elsif @orientation == :down #args.outputs.solids << [@x + x_offset, @y + @block_size, @block_size * 3 - @block_offset, @block_size - @block_offset, @r, @g, @b] args.outputs.solids << {x: (@x + x_offset), y: (@y + @block_size), w: (@block_size * 3 - @block_offset), h: (@block_size - @block_offset), r: @r , g: @g, b: @b} #args.outputs.solids << [@x + x_offset + @block_size, @y, @block_size - @block_offset, @block_size * 2 - @block_offset, @r, @g, @b] args.outputs.solids << {x: (@x + x_offset + @block_size), y: (@y), w: (@block_size - @block_offset), h: ( @block_size * 2 - @block_offset), r: @r , g: @g, b: @b} end #psize = 5.0 #for p in @shapePoints #args.outputs.solids << [p.x-psize/2, p.y-psize/2, psize, psize, 0, 0, 0] #end args.outputs.labels << [@x + x_offset + (@block_size * 2 - @block_offset)/2, (@y) + (@block_size * 2 - @block_offset)/2, @count.to_s] end def updateOne_old args didHit = false hitter = nil toCollide = nil for b in args.state.balls if [b.x, b.y, b.width, b.height].intersect_rect?(@bold) didSquare = false for s in @squareColliders if (s.collision?(args, b)) didSquare = true didHit = true #s.collide(args, b) toCollide = s hitter = b break end end if (didSquare == false) for c in @colliders #puts args.state.ball.velocity if c.collision?(args, b.getPoints(args),b) #c.collide args, b toCollide = c didHit = true hitter = b break end end end end if didHit break end end if (didHit) @count=0 hitter.makeLeader args #toCollide.collide(args, hitter) args.state.tshapes.delete(self) #puts "HIT!" + hitter.number end end def update_old args if (@count == 1) updateOne args return end didHit = false hitter = nil for b in args.state.ballParents if [b.x, b.y, b.width, b.height].intersect_rect?(@bold) didSquare = false for s in @squareColliders if (s.collision?(args, b)) didSquare = true didHit=true s.collide(args, b) hitter = b end end if (didSquare == false) for c in @colliders #puts args.state.ball.velocity if c.collision?(args, b.getPoints(args), b) c.collide args, b didHit=true hitter = b end end end end end if (didHit) @[email protected] @damageCount.append([(hitter.leastChain+1 - hitter.number)-1, args.state.tick_count]) if (@count == 0) args.state.tshapes.delete(self) return end end i=0 while i < @damageCount.length if @damageCount[i][0] <= 0 @damageCount.delete_at(i) i-=1 elsif @damageCount[i][1].elapsed_time > BALL_DISTANCE @count-=1 @damageCount[i][0]-=1 end if (@count == 0) args.state.tshapes.delete(self) return end i+=1 end end #end update def update args universalUpdate args, self end end class Line attr_accessor :count, :x, :y, :home, :bold, :squareColliders, :colliders, :damageCount def initialize(args, x, y, block_size, orientation, block_offset) @x = x * block_size @y = y * block_size @block_size = block_size @block_offset = block_offset @orientation = orientation @damageCount = [] @home = "lines" Kernel.srand() @r = rand(255) @g = rand(255) @b = rand(255) @count = rand(MAX_COUNT)+1 @shapePoints = getShapePoints(args) minX={x:INFINITY, y:0} minY={x:0, y:INFINITY} maxX={x:-INFINITY, y:0} maxY={x:0, y:-INFINITY} for p in @shapePoints if p.x < minX.x minX = p end if p.x > maxX.x maxX = p end if p.y < minY.y minY = p end if p.y > maxY.y maxY = p end end hypotenuse=args.state.ball_hypotenuse @bold = [(minX.x-hypotenuse/2)-1, (minY.y-hypotenuse/2)-1, -((minX.x-hypotenuse/2)-1)+(maxX.x + hypotenuse + 2), -((minY.y-hypotenuse/2)-1)+(maxY.y + hypotenuse + 2)] end def getShapePoints(args) points=[] x_offset = (args.state.board_width + args.grid.w / 8) + (@block_offset / 2) if @orientation == :right #args.outputs.solids << [@x + x_offset, @y, @block_size * 3 - @block_offset, @block_size - @block_offset, @r, @g, @b] xa [email protected] + x_offset ya [email protected] wa [email protected]_size * 3 - @block_offset ha =(@block_size - @block_offset) elsif @orientation == :up #args.outputs.solids << [@x + x_offset, @y, @block_size - @block_offset, @block_size * 3 - @block_offset, @r, @g, @b] xa [email protected] + x_offset ya [email protected] wa [email protected]_size - @block_offset ha [email protected]_size * 3 - @block_offset elsif @orientation == :left #args.outputs.solids << [@x + x_offset, @y, @block_size * 3 - @block_offset, @block_size - @block_offset, @r, @g, @b] xa [email protected] + x_offset ya [email protected] wa [email protected]_size * 3 - @block_offset ha [email protected]_size - @block_offset elsif @orientation == :down #args.outputs.solids << [@x + x_offset, @y, @block_size - @block_offset, @block_size * 3 - @block_offset, @r, @g, @b] xa [email protected] + x_offset ya [email protected] wa [email protected]_size - @block_offset ha [email protected]_size * 3 - @block_offset end points = [ {x: xa, y:ya}, {x: xa + wa,y:ya}, {x: xa + wa,y:ya+ha}, {x: xa, y:ya+ha}, ] @squareColliders = [ SquareCollider.new(points[0].x,points[0].y,{x:-1,y:-1}), SquareCollider.new(points[1].x-COLLISIONWIDTH,points[1].y,{x:1,y:-1}), SquareCollider.new(points[2].x-COLLISIONWIDTH,points[2].y-COLLISIONWIDTH,{x:1,y:1}), SquareCollider.new(points[3].x,points[3].y-COLLISIONWIDTH,{x:-1,y:1}), ] @colliders = [ LinearCollider.new(points[0],points[1], :neg), LinearCollider.new(points[1],points[2], :neg), LinearCollider.new(points[2],points[3], :pos), LinearCollider.new(points[0],points[3], :pos), ] return points end def update args universalUpdate args, self end def draw(args) x_offset = (args.state.board_width + args.grid.w / 8) + @block_offset / 2 if @orientation == :right args.outputs.solids << [@x + x_offset, @y, @block_size * 3 - @block_offset, @block_size - @block_offset, @r, @g, @b] elsif @orientation == :up args.outputs.solids << [@x + x_offset, @y, @block_size - @block_offset, @block_size * 3 - @block_offset, @r, @g, @b] elsif @orientation == :left args.outputs.solids << [@x + x_offset, @y, @block_size * 3 - @block_offset, @block_size - @block_offset, @r, @g, @b] elsif @orientation == :down args.outputs.solids << [@x + x_offset, @y, @block_size - @block_offset, @block_size * 3 - @block_offset, @r, @g, @b] end args.outputs.labels << [@x + x_offset + (@block_size * 2 - @block_offset)/2, (@y) + (@block_size * 2 - @block_offset)/2, @count.to_s] end end
Physics And Collisions - Arbitrary Collision - linear_collider.rb
# ./samples/04_physics_and_collisions/09_arbitrary_collision/app/linear_collider.rb COLLISIONWIDTH=8 class LinearCollider attr_reader :pointA, :pointB def initialize (pointA, pointB, mode,collisionWidth=COLLISIONWIDTH) @pointA = pointA @pointB = pointB @mode = mode @collisionWidth = collisionWidth if (@pointA.x > @pointB.x) @pointA, @pointB = @pointB, @pointA end @linearCollider_collision_once = false end def collisionSlope args if (@[email protected] == 0) return INFINITY end return (@pointB.y - @pointA.y) / (@pointB.x - @pointA.x) end def collision? (args, points, ball=nil) slope = collisionSlope args result = false # calculate a vector with a magnitude of (1/2)collisionWidth and a direction perpendicular to the collision line vect=nil;mag=nil;vect=nil; if @mode == :both vect = {x: @pointB.x - @pointA.x, y:@pointB.y - @pointA.y} mag = (vect.x**2 + vect.y**2)**0.5 vect = {y: -1*(vect.x/(mag))*@collisionWidth*0.5, x: (vect.y/(mag))*@collisionWidth*0.5} else vect = {x: @pointB.x - @pointA.x, y:@pointB.y - @pointA.y} mag = (vect.x**2 + vect.y**2)**0.5 vect = {y: -1*(vect.x/(mag))*@collisionWidth, x: (vect.y/(mag))*@collisionWidth} end rpointA=nil;rpointB=nil;rpointC=nil;rpointD=nil; if @mode == :pos rpointA = {x:@pointA.x + vect.x, y:@pointA.y + vect.y} rpointB = {x:@pointB.x + vect.x, y:@pointB.y + vect.y} rpointC = {x:@pointB.x, y:@pointB.y} rpointD = {x:@pointA.x, y:@pointA.y} elsif @mode == :neg rpointA = {x:@pointA.x, y:@pointA.y} rpointB = {x:@pointB.x, y:@pointB.y} rpointC = {x:@pointB.x - vect.x, y:@pointB.y - vect.y} rpointD = {x:@pointA.x - vect.x, y:@pointA.y - vect.y} elsif @mode == :both rpointA = {x:@pointA.x + vect.x, y:@pointA.y + vect.y} rpointB = {x:@pointB.x + vect.x, y:@pointB.y + vect.y} rpointC = {x:@pointB.x - vect.x, y:@pointB.y - vect.y} rpointD = {x:@pointA.x - vect.x, y:@pointA.y - vect.y} end #four point rectangle if ball != nil xs = [rpointA.x,rpointB.x,rpointC.x,rpointD.x] ys = [rpointA.y,rpointB.y,rpointC.y,rpointD.y] correct = 1 rect1 = [ball.x, ball.y, ball.width, ball.height] #$r1 = rect1 rect2 = [xs.min-correct,ys.min-correct,(xs.max-xs.min)+correct*2,(ys.max-ys.min)+correct*2] #$r2 = rect2 if rect1.intersect_rect?(rect2) == false return false end end #area of a triangle triArea = -> (a,b,c) { ((a.x * (b.y - c.y) + b.x * (c.y - a.y) + c.x * (a.y - b.y))/2.0).abs } #if at least on point is in the rectangle then collision? is true - otherwise false for point in points #Check whether a given point lies inside a rectangle or not: #if the sum of the area of traingls, PAB, PBC, PCD, PAD equal the area of the rec, then an intersection has occured areaRec = triArea.call(rpointA, rpointB, rpointC)+triArea.call(rpointA, rpointC, rpointD) areaSum = [ triArea.call(point, rpointA, rpointB),triArea.call(point, rpointB, rpointC), triArea.call(point, rpointC, rpointD),triArea.call(point, rpointA, rpointD) ].inject(0){|sum,x| sum + x } e = 0.0001 #allow for minor error if areaRec>= areaSum-e and areaRec<= areaSum+e result = true #return true break end end #args.outputs.lines << [@pointA.x, @pointA.y, @pointB.x, @pointB.y, 000, 000, 000] #args.outputs.lines << [rpointA.x, rpointA.y, rpointB.x, rpointB.y, 255, 000, 000] #args.outputs.lines << [rpointC.x, rpointC.y, rpointD.x, rpointD.y, 000, 000, 255] #puts (rpointA.x.to_s + " " + rpointA.y.to_s + " " + rpointB.x.to_s + " "+ rpointB.y.to_s) return result end #end collision? def getRepelMagnitude (fbx, fby, vrx, vry, ballMag) a = fbx ; b = vrx ; c = fby d = vry ; e = ballMag if b**2 + d**2 == 0 #unexpected end x1 = (-a*b+-c*d + (e**2 * b**2 - b**2 * c**2 + 2*a*b*c*d + e**2 + d**2 - a**2 * d**2)**0.5)/(b**2 + d**2) x2 = -((a*b + c*d + (e**2 * b**2 - b**2 * c**2 + 2*a*b*c*d + e**2 * d**2 - a**2 * d**2)**0.5)/(b**2 + d**2)) err = 0.00001 o = ((fbx + x1*vrx)**2 + (fby + x1*vry)**2 ) ** 0.5 p = ((fbx + x2*vrx)**2 + (fby + x2*vry)**2 ) ** 0.5 r = 0 if (ballMag >= o-err and ballMag <= o+err) r = x1 elsif (ballMag >= p-err and ballMag <= p+err) r = x2 else #unexpected end return r end def collide args, ball slope = collisionSlope args # perpVect: normal vector perpendicular to collision perpVect = {x: @pointB.x - @pointA.x, y:@pointB.y - @pointA.y} mag = (perpVect.x**2 + perpVect.y**2)**0.5 perpVect = {x: perpVect.x/(mag), y: perpVect.y/(mag)} perpVect = {x: -perpVect.y, y: perpVect.x} if perpVect.y > 0 #ensure perpVect points upward perpVect = {x: perpVect.x*-1, y: perpVect.y*-1} end previousPosition = { x:ball.x-ball.velocity.x, y:ball.y-ball.velocity.y } yInterc = @pointA.y + -slope*@pointA.x if slope == INFINITY if previousPosition.x < @pointA.x perpVect = {x: perpVect.x*-1, y: perpVect.y*-1} yInterc = -INFINITY end elsif previousPosition.y < slope*previousPosition.x + yInterc #check if ball is bellow or above the collider to determine if perpVect is - or + perpVect = {x: perpVect.x*-1, y: perpVect.y*-1} end velocityMag = (ball.velocity.x**2 + ball.velocity.y**2)**0.5 theta_ball=Math.atan2(ball.velocity.y,ball.velocity.x) #the angle of the ball's velocity theta_repel=Math.atan2(perpVect.y,perpVect.x) #the angle of the repelling force(perpVect) fbx = velocityMag * Math.cos(theta_ball) #the x component of the ball's velocity fby = velocityMag * Math.sin(theta_ball) #the y component of the ball's velocity #the magnitude of the repelling force repelMag = getRepelMagnitude(fbx, fby, perpVect.x, perpVect.y, (ball.velocity.x**2 + ball.velocity.y**2)**0.5) frx = repelMag* Math.cos(theta_repel) #the x component of the repel's velocity | magnitude is set to twice of fbx fry = repelMag* Math.sin(theta_repel) #the y component of the repel's velocity | magnitude is set to twice of fby fsumx = fbx+frx #sum of x forces fsumy = fby+fry #sum of y forces fr = velocityMag#fr is the resulting magnitude thetaNew = Math.atan2(fsumy, fsumx) #thetaNew is the resulting angle xnew = fr*Math.cos(thetaNew)#resulting x velocity ynew = fr*Math.sin(thetaNew)#resulting y velocity if (velocityMag < MAX_VELOCITY) ball.velocity = Vector2d.new(xnew*1.1, ynew*1.1) else ball.velocity = Vector2d.new(xnew, ynew) end end end
Physics And Collisions - Arbitrary Collision - main.rb
# ./samples/04_physics_and_collisions/09_arbitrary_collision/app/main.rb INFINITY= 10**10 MAX_VELOCITY = 8.0 BALL_COUNT = 90 BALL_DISTANCE = 20 require 'app/vector2d.rb' require 'app/blocks.rb' require 'app/ball.rb' require 'app/rectangle.rb' require 'app/linear_collider.rb' require 'app/square_collider.rb' #Method to init default values def defaults args args.state.board_width ||= args.grid.w / 4 args.state.board_height ||= args.grid.h args.state.game_area ||= [(args.state.board_width + args.grid.w / 8), 0, args.state.board_width, args.grid.h] args.state.balls ||= [] args.state.num_balls ||= 0 args.state.ball_created_at ||= args.state.tick_count args.state.ball_hypotenuse = (10**2 + 10**2)**0.5 args.state.ballParents ||=nil init_blocks args init_balls args end begin :default_methods def init_blocks args block_size = args.state.board_width / 8 #Space inbetween each block block_offset = 4 args.state.squares ||=[ Square.new(args, 2, 0, block_size, :right, block_offset), Square.new(args, 5, 0, block_size, :right, block_offset), Square.new(args, 6, 7, block_size, :right, block_offset) ] #Possible orientations are :right, :left, :up, :down args.state.tshapes ||= [ TShape.new(args, 0, 6, block_size, :left, block_offset), TShape.new(args, 3, 3, block_size, :down, block_offset), TShape.new(args, 0, 3, block_size, :right, block_offset), TShape.new(args, 0, 11, block_size, :up, block_offset) ] args.state.lines ||= [ Line.new(args,3, 8, block_size, :down, block_offset), Line.new(args, 7, 3, block_size, :up, block_offset), Line.new(args, 3, 7, block_size, :right, block_offset) ] #exit() end def init_balls args return unless args.state.num_balls < BALL_COUNT #only create a new ball every 10 ticks return unless args.state.ball_created_at.elapsed_time > 10 if (args.state.num_balls == 0) args.state.balls.append(Ball.new(args,args.state.num_balls,BALL_COUNT-1, nil, nil)) args.state.ballParents = [args.state.balls[0]] else args.state.balls.append(Ball.new(args,args.state.num_balls,BALL_COUNT-1, args.state.balls.last, nil) ) args.state.balls[-2].child = args.state.balls[-1] end args.state.ball_created_at = args.state.tick_count args.state.num_balls += 1 end end #Render loop def render args bgClr = {r:10, g:10, b:200} bgClr = {r:255-30, g:255-30, b:255-30} args.outputs.solids << [0, 0, $args.grid.right, $args.grid.top, bgClr[:r], bgClr[:g], bgClr[:b]]; args.outputs.borders << args.state.game_area render_instructions args render_shapes args render_balls args #args.state.rectangle.draw args args.outputs.sprites << [$args.grid.right-(args.state.board_width + args.grid.w / 8), 0, $args.grid.right, $args.grid.top, "sprites/square-white-2.png", 0, 255, bgClr[:r], bgClr[:g], bgClr[:b]] args.outputs.sprites << [0, 0, (args.state.board_width + args.grid.w / 8), $args.grid.top, "sprites/square-white-2.png", 0, 255, bgClr[:r], bgClr[:g], bgClr[:b]] end begin :render_methods def render_instructions args #gtk.current_framerate args.outputs.labels << [20, $args.grid.top-20, "FPS: " + $gtk.current_framerate.to_s] if (args.state.balls != nil && args.state.balls[0] != nil) bx = args.state.balls[0].velocity.x by = args.state.balls[0].velocity.y bmg = (bx**2.0 + by**2.0)**0.5 args.outputs.labels << [20, $args.grid.top-20-20, "V: " + bmg.to_s ] end end def render_shapes args for s in args.state.squares s.draw args end for l in args.state.lines l.draw args end for t in args.state.tshapes t.draw args end end def render_balls args #args.state.balls.each do |ball| #ball.draw args #end args.outputs.sprites << args.state.balls.map do |ball| ball.getDraw args end end end #Calls all methods necessary for performing calculations def calc args for b in args.state.ballParents b.update args end for s in args.state.squares s.update args end for l in args.state.lines l.update args end for t in args.state.tshapes t.update args end end begin :calc_methods end def tick args defaults args render args calc args end
Physics And Collisions - Arbitrary Collision - paddle.rb
# ./samples/04_physics_and_collisions/09_arbitrary_collision/app/paddle.rb class Paddle attr_accessor :enabled def initialize () @x=WIDTH/2 @y=100 @width=100 @height=20 @speed=10 @xyCollision = LinearCollider.new({x: @x,y: @[email protected]+5}, {x: @[email protected], y: @[email protected]+5}) @xyCollision2 = LinearCollider.new({x: @x,y: @y}, {x: @[email protected], y: @y}, :pos) @xyCollision3 = LinearCollider.new({x: @x,y: @y}, {x: @x, y: @[email protected]+5}) @xyCollision4 = LinearCollider.new({x: @[email protected],y: @y}, {x: @[email protected], y: @[email protected]+5}, :pos) @enabled = true end def update args @xyCollision.resetPoints({x: @x,y: @[email protected]+5}, {x: @[email protected], y: @[email protected]+5}) @xyCollision2.resetPoints({x: @x,y: @y}, {x: @[email protected], y: @y}) @xyCollision3.resetPoints({x: @x,y: @y}, {x: @x, y: @[email protected]+5}) @xyCollision4.resetPoints({x: @[email protected],y: @y}, {x: @[email protected], y: @[email protected]+5}) @xyCollision.update args @xyCollision2.update args @xyCollision3.update args @xyCollision4.update args args.inputs.keyboard.key_held.left ||= false args.inputs.keyboard.key_held.right ||= false if not (args.inputs.keyboard.key_held.left == args.inputs.keyboard.key_held.right) if args.inputs.keyboard.key_held.left && @enabled @[email protected] elsif args.inputs.keyboard.key_held.right && @enabled @[email protected] end end xmin =WIDTH/4 xmax = 3*(WIDTH/4) @x = (@[email protected] > xmax) ? [email protected] : (@xPhysics And Collisions - Arbitrary Collision - rectangle.rb
# ./samples/04_physics_and_collisions/09_arbitrary_collision/app/rectangle.rb class Rectangle def initialize args @image = "sprites/roundSquare_white.png" @width = 160.0 @height = 80.0 @x=$args.grid.right/2.0 - @width/2.0 @y=$args.grid.top/2.0 - @height/2.0 @xtmp = @width * (1.0/10.0) @ytmp = @height * (1.0/10.0) #ball0 = args.state.balls[0] #hypotenuse = (args.state.balls[0].width**2 + args.state.balls[0].height**2)**0.5 hypotenuse=args.state.ball_hypotenuse @boldXY = {x:(@x-hypotenuse/2)-1, y:(@y-hypotenuse/2)-1} @boldWidth = @width + hypotenuse + 2 @boldHeight = @height + hypotenuse + 2 @bold = [(@x-hypotenuse/2)-1,(@y-hypotenuse/2)-1,@width + hypotenuse + 2,@height + hypotenuse + 2] @points = [ {x:@x, y:@[email protected]}, {x:@[email protected], y:@y}, {x:@[email protected]@xtmp, y:@y}, {x:@[email protected], y:@[email protected]}, {x:@[email protected], y:@[email protected]@ytmp},# {x:@[email protected]@xtmp, y:@[email protected]}, {x:@[email protected], y:@[email protected]}, {x:@x, y:@[email protected]@ytmp} ] @colliders = [] #i = 0 #while i < @points.length-1 #@colliders.append(LinearCollider.new(@points[i],@points[i+1],:pos)) #i+=1 #end @colliders.append(LinearCollider.new(@points[0],@points[1], :neg)) @colliders.append(LinearCollider.new(@points[1],@points[2], :neg)) @colliders.append(LinearCollider.new(@points[2],@points[3], :neg)) @colliders.append(LinearCollider.new(@points[3],@points[4], :neg)) @colliders.append(LinearCollider.new(@points[4],@points[5], :pos)) @colliders.append(LinearCollider.new(@points[5],@points[6], :pos)) @colliders.append(LinearCollider.new(@points[6],@points[7], :pos)) @colliders.append(LinearCollider.new(@points[0],@points[7], :pos)) end def update args for b in args.state.balls if [b.x, b.y, b.width, b.height].intersect_rect?(@bold) for c in @colliders if c.collision?(args, b.getPoints(args),b) c.collide args, b end end end end end def draw args args.outputs.sprites << [ @x, # X @y, # Y @width, # W @height, # H @image, # PATH 0, # ANGLE 255, # ALPHA 219, # RED_SATURATION 112, # GREEN_SATURATION 147 # BLUE_SATURATION ] #args.outputs.sprites << [@x, @y, @width, @height, "sprites/roundSquare_small_black.png"] end def serialize {x: @x, y:@y} end def inspect serialize.to_s end def to_s serialize.to_s end endPhysics And Collisions - Arbitrary Collision - square_collider.rb
# ./samples/04_physics_and_collisions/09_arbitrary_collision/app/square_collider.rb class SquareCollider def initialize x,y,direction,size=COLLISIONWIDTH @x = x @y = y @size = size @direction = direction end def collision? args, ball #args.outputs.solids << [@x, @y, @size, @size, 000, 255, 255] return [@x,@y,@size,@size].intersect_rect?([ball.x,ball.y,ball.width,ball.height]) end def collide args, ball vmag = (ball.velocity.x**2.0 +ball.velocity.y**2.0)**0.5 a = ((2.0**0.5)*vmag)/2.0 if vmag < MAX_VELOCITY ball.velocity.x = (a) * @direction.x * 1.1 ball.velocity.y = (a) * @direction.y * 1.1 else ball.velocity.x = (a) * @direction.x ball.velocity.y = (a) * @direction.y end end endPhysics And Collisions - Arbitrary Collision - vector2d.rb
# ./samples/04_physics_and_collisions/09_arbitrary_collision/app/vector2d.rb class Vector2d attr_accessor :x, :y def initialize x=0, y=0 @x=x @y=y end #returns a vector multiplied by scalar x #x [float] scalar def mult x r = Vector2d.new(0,0) [email protected]*x [email protected]*x r end # vect [Vector2d] vector to copy def copy vect Vector2d.new(@x, @y) end #returns a new vector equivalent to this+vect #vect [Vector2d] vector to add to self def add vect Vector2d.new(@x+vect.x,@y+vect.y) end #returns a new vector equivalent to this-vect #vect [Vector2d] vector to subtract to self def sub vect Vector2d.new(@x-vect.c, @y-vect.y) end #return the magnitude of the vector def mag ((@x**2)+(@y**2))**0.5 end #returns a new normalize version of the vector def normalize Vector2d.new(@x/mag, @y/mag) end #TODO delet? def distABS vect ((([email protected])**2+([email protected])**2)**0.5).abs() end endPhysics And Collisions - Collision With Object Removal - ball.rb
# ./samples/04_physics_and_collisions/10_collision_with_object_removal/app/ball.rb class Ball #TODO limit accessors? attr_accessor :xy, :width, :height, :velocity #@xy [Vector2d] x,y position #@velocity [Vector2d] velocity of ball def initialize @xy = Vector2d.new(WIDTH/2,500) @velocity = Vector2d.new(4,-4) @width = 20 @height = 20 end #move the ball according to its velocity def update args @[email protected] @[email protected] end #render the ball to the screen def render args args.outputs.solids << [@xy.x,@xy.y,@width,@height,255,0,255]; #args.outputs.labels << [20,HEIGHT-50,"velocity: " [email protected]_s+","[email protected]_s + " magnitude:" + @velocity.mag.to_s] end def rect [@xy.x,@xy.y,@width,@height] end endPhysics And Collisions - Collision With Object Removal - linear_collider.rb
# ./samples/04_physics_and_collisions/10_collision_with_object_removal/app/linear_collider.rb #The LinearCollider (theoretically) produces collisions upon a line segment defined point.y two x,y cordinates class LinearCollider #start [Array of length 2] start of the line segment as a x,y cordinate #last [Array of length 2] end of the line segment as a x,y cordinate #inorder for the LinearCollider to be functional the line segment must be said to have a thickness #(as it is unlikly that a colliding object will land exactly on the linesegment) #extension defines if the line's thickness extends negatively or positively #extension :pos extends positively #extension :neg extends negatively #thickness [float] how thick the line should be (should always be atleast as large as the magnitude of the colliding object) def initialize (pointA, pointB, extension=:neg, thickness=10) @pointA = pointA @pointB = pointB @thickness = thickness @extension = extension @pointAExtended={ x: @pointA.x + @thickness*(@extension == :neg ? -1 : 1), y: @pointA.y + @thickness*(@extension == :neg ? -1 : 1) } @pointBExtended={ x: @pointB.x + @thickness*(@extension == :neg ? -1 : 1), y: @pointB.y + @thickness*(@extension == :neg ? -1 : 1) } end def resetPoints(pointA,pointB) @pointA = pointA @pointB = pointB @pointAExtended={ x:@pointA.x + @thickness*(@extension == :neg ? -1 : 1), y:@pointA.y + @thickness*(@extension == :neg ? -1 : 1) } @pointBExtended={ x:@pointB.x + @thickness*(@extension == :neg ? -1 : 1), y:@pointB.y + @thickness*(@extension == :neg ? -1 : 1) } end #TODO: Ugly function def slope (pointA, pointB) return (pointB.x==pointA.x) ? INFINITY : (pointB.y+-pointA.y)/(pointB.x+-pointA.x) end #TODO: Ugly function def intercept(pointA, pointB) if (slope(pointA, pointB) == INFINITY) -INFINITY elsif slope(pointA, pointB) == -1*INFINITY INFINITY else pointA.y+-1.0*(slope(pointA, pointB)*pointA.x) end end def calcY(pointA, pointB, x) return slope(pointA, pointB)*x + intercept(pointA, pointB) end #test if a collision has occurred def isCollision? (point) #INFINITY slop breaks down when trying to determin collision, ergo it requires a special test if slope(@pointA, @pointB) == INFINITY && point.x >= [@pointA.x,@pointB.x].min+(@extension == :pos ? [email protected] : 0) && point.x <= [@pointA.x,@pointB.x].max+(@extension == :neg ? @thickness : 0) && point.y >= [@pointA.y,@pointB.y].min && point.y <= [@pointA.y,@pointB.y].max return true end isNegInLine = @extension == :neg && point.y <= slope(@pointA, @pointB)*point.x+intercept(@pointA,@pointB) && point.y >= point.x*slope(@pointAExtended, @pointBExtended)+intercept(@pointAExtended,@pointBExtended) isPosInLine = @extension == :pos && point.y >= slope(@pointA, @pointB)*point.x+intercept(@pointA,@pointB) && point.y <= point.x*slope(@pointAExtended, @pointBExtended)+intercept(@pointAExtended,@pointBExtended) isInBoxBounds = point.x >= [@pointA.x,@pointB.x].min && point.x <= [@pointA.x,@pointB.x].max && point.y >= [@pointA.y,@pointB.y].min+(@extension == :neg ? [email protected] : 0) && point.y <= [@pointA.y,@pointB.y].max+(@extension == :pos ? @thickness : 0) return isInBoxBounds && (isNegInLine || isPosInLine) end def getRepelMagnitude (fbx, fby, vrx, vry, args) a = fbx ; b = vrx ; c = fby d = vry ; e = args.state.ball.velocity.mag if b**2 + d**2 == 0 puts "magnitude error" end x1 = (-a*b+-c*d + (e**2 * b**2 - b**2 * c**2 + 2*a*b*c*d + e**2 + d**2 - a**2 * d**2)**0.5)/(b**2 + d**2) x2 = -((a*b + c*d + (e**2 * b**2 - b**2 * c**2 + 2*a*b*c*d + e**2 * d**2 - a**2 * d**2)**0.5)/(b**2 + d**2)) return ((a+x1*b)**2 + (c+x1*d)**2 == e**2) ? x1 : x2 end def update args #each of the four points on the square ball - NOTE simple to extend to a circle points= [ {x: args.state.ball.xy.x, y: args.state.ball.xy.y}, {x: args.state.ball.xy.x+args.state.ball.width, y: args.state.ball.xy.y}, {x: args.state.ball.xy.x, y: args.state.ball.xy.y+args.state.ball.height}, {x: args.state.ball.xy.x+args.state.ball.width, y: args.state.ball.xy.y + args.state.ball.height} ] #for each point p in points for point in points #isCollision.md has more information on this section #TODO: section can certainly be simplifyed if isCollision?(point) u = Vector2d.new(1.0,((slope(@pointA, @pointB)==0) ? INFINITY : -1/slope(@pointA, @pointB))*1.0).normalize #normal perpendicular (to line segment) vector #the vector with the repeling force can be u or -u depending of where the ball was coming from in relation to the line segment previousBallPosition=Vector2d.new(point.x-args.state.ball.velocity.x,point.y-args.state.ball.velocity.y) choiceA = (u.mult(1)) choiceB = (u.mult(-1)) vectorRepel = nil if (slope(@pointA, @pointB))!=INFINITY && u.y < 0 choiceA, choiceB = choiceB, choiceA end vectorRepel = (previousBallPosition.y > calcY(@pointA, @pointB, previousBallPosition.x)) ? choiceA : choiceB #vectorRepel = (previousBallPosition.y > slope(@pointA, @pointB)*previousBallPosition.x+intercept(@pointA,@pointB)) ? choiceA : choiceB) if (slope(@pointA, @pointB) == INFINITY) #slope INFINITY breaks down in the above test, ergo it requires a custom test vectorRepel = (previousBallPosition.x > @pointA.x) ? (u.mult(1)) : (u.mult(-1)) end #puts (" " + $t[0].to_s + "," + $t[1].to_s + " " + $t[2].to_s + "," + $t[3].to_s + " " + " " + u.x.to_s + "," + u.y.to_s) #vectorRepel now has the repeling force mag = args.state.ball.velocity.mag theta_ball=Math.atan2(args.state.ball.velocity.y,args.state.ball.velocity.x) #the angle of the ball's velocity theta_repel=Math.atan2(vectorRepel.y,vectorRepel.x) #the angle of the repeling force #puts ("theta:" + theta_ball.to_s + " " + theta_repel.to_s) #theta okay fbx = mag * Math.cos(theta_ball) #the x component of the ball's velocity fby = mag * Math.sin(theta_ball) #the y component of the ball's velocity repelMag = getRepelMagnitude(fbx, fby, vectorRepel.x, vectorRepel.y, args) frx = repelMag* Math.cos(theta_repel) #the x component of the repel's velocity | magnitude is set to twice of fbx fry = repelMag* Math.sin(theta_repel) #the y component of the repel's velocity | magnitude is set to twice of fby fsumx = fbx+frx #sum of x forces fsumy = fby+fry #sum of y forces fr = mag#fr is the resulting magnitude thetaNew = Math.atan2(fsumy, fsumx) #thetaNew is the resulting angle xnew = fr*Math.cos(thetaNew) #resulting x velocity ynew = fr*Math.sin(thetaNew) #resulting y velocity args.state.ball.velocity = Vector2d.new(xnew,ynew) #args.state.ball.xy.add(args.state.ball.velocity) break #no need to check the other points ? else end end end #end update endPhysics And Collisions - Collision With Object Removal - main.rb
# ./samples/04_physics_and_collisions/10_collision_with_object_removal/app/main.rb # coding: utf-8 INFINITY= 10**10 WIDTH=1280 HEIGHT=720 require 'app/vector2d.rb' require 'app/paddle.rb' require 'app/ball.rb' require 'app/linear_collider.rb' #Method to init default values def defaults args args.state.game_board ||= [(args.grid.w / 2 - args.grid.w / 4), 0, (args.grid.w / 2), args.grid.h] args.state.bricks ||= [] args.state.num_bricks ||= 0 args.state.game_over_at ||= 0 args.state.paddle ||= Paddle.new args.state.ball ||= Ball.new args.state.westWall ||= LinearCollider.new({x: args.grid.w/4, y: 0}, {x: args.grid.w/4, y: args.grid.h}, :pos) args.state.eastWall ||= LinearCollider.new({x: 3*args.grid.w*0.25, y: 0}, {x: 3*args.grid.w*0.25, y: args.grid.h}) args.state.southWall ||= LinearCollider.new({x: 0, y: 0}, {x: args.grid.w, y: 0}) args.state.northWall ||= LinearCollider.new({x: 0, y:args.grid.h}, {x: args.grid.w, y: args.grid.h}, :pos) #args.state.testWall ||= LinearCollider.new({x:0 , y:0},{x:args.grid.w, y:args.grid.h}) end #Render loop def render args render_instructions args render_board args render_bricks args end begin :render_methods #Method to display the instructions of the game def render_instructions args args.outputs.labels << [225, args.grid.h - 30, "← and → to move the paddle left and right", 0, 1] end def render_board args args.outputs.borders << args.state.game_board end def render_bricks args args.outputs.solids << args.state.bricks.map(&:rect) end end #Calls all methods necessary for performing calculations def calc args add_new_bricks args reset_game args calc_collision args win_game args args.state.westWall.update args args.state.eastWall.update args args.state.southWall.update args args.state.northWall.update args args.state.paddle.update args args.state.ball.update args #args.state.testWall.update args args.state.paddle.render args args.state.ball.render args end begin :calc_methods def add_new_bricks args return if args.state.num_bricks > 40 #Width of the game board is 640px brick_width = (args.grid.w / 2) / 10 brick_height = brick_width / 2 (4).map_with_index do |y| #Make a box that is 10 bricks wide and 4 bricks tall args.state.bricks += (10).map_with_index do |x| args.state.new_entity(:brick) do |b| b.x = x * brick_width + (args.grid.w / 2 - args.grid.w / 4) b.y = args.grid.h - ((y + 1) * brick_height) b.rect = [b.x + 1, b.y - 1, brick_width - 2, brick_height - 2, 235, 50 * y, 52] #Add linear colliders to the brick b.collider_bottom = LinearCollider.new([(b.x-2), (b.y-5)], [(b.x+brick_width+1), (b.y-5)], :pos, brick_height) b.collider_right = LinearCollider.new([(b.x+brick_width+1), (b.y-5)], [(b.x+brick_width+1), (b.y+brick_height+1)], :pos) b.collider_left = LinearCollider.new([(b.x-2), (b.y-5)], [(b.x-2), (b.y+brick_height+1)], :neg) b.collider_top = LinearCollider.new([(b.x-2), (b.y+brick_height+1)], [(b.x+brick_width+1), (b.y+brick_height+1)], :neg) # @xyCollision = LinearCollider.new({x: @x,y: @[email protected]}, {x: @[email protected], y: @[email protected]}) # @xyCollision2 = LinearCollider.new({x: @x,y: @y}, {x: @[email protected], y: @y}, :pos) # @xyCollision3 = LinearCollider.new({x: @x,y: @y}, {x: @x, y: @[email protected]}) # @xyCollision4 = LinearCollider.new({x: @[email protected],y: @y}, {x: @[email protected], y: @[email protected]}, :pos) b.broken = false args.state.num_bricks += 1 end end end end def reset_game args if args.state.ball.xy.y < 20 && args.state.game_over_at.elapsed_time > 60 #Freeze the ball args.state.ball.velocity.x = 0 args.state.ball.velocity.y = 0 #Freeze the paddle args.state.paddle.enabled = false args.state.game_over_at = args.state.tick_count end if args.state.game_over_at.elapsed_time < 60 && args.state.tick_count > 60 && args.state.bricks.count != 0 #Display a "Game over" message args.outputs.labels << [100, 100, "GAME OVER", 10] end #If 60 frames have passed since the game ended, restart the game if args.state.game_over_at != 0 && args.state.game_over_at.elapsed_time == 60 # FIXME: only put value types in state args.state.ball = Ball.new # FIXME: only put value types in state args.state.paddle = Paddle.new args.state.bricks = [] args.state.num_bricks = 0 end end def calc_collision args #Remove the brick if it is hit with the ball ball = args.state.ball ball_rect = [ball.xy.x, ball.xy.y, 20, 20] #Loop through each brick to see if the ball is colliding with it args.state.bricks.each do |b| if b.rect.intersect_rect?(ball_rect) #Run the linear collider for the brick if there is a collision b[:collider_bottom].update args b[:collider_right].update args b[:collider_left].update args b[:collider_top].update args b.broken = true end end args.state.bricks = args.state.bricks.reject(&:broken) end def win_game args if args.state.bricks.count == 0 && args.state.game_over_at.elapsed_time > 60 #Freeze the ball args.state.ball.velocity.x = 0 args.state.ball.velocity.y = 0 #Freeze the paddle args.state.paddle.enabled = false args.state.game_over_at = args.state.tick_count end if args.state.game_over_at.elapsed_time < 60 && args.state.tick_count > 60 && args.state.bricks.count == 0 #Display a "Game over" message args.outputs.labels << [100, 100, "CONGRATULATIONS!", 10] end end end def tick args defaults args render args calc args #args.outputs.lines << [0, 0, args.grid.w, args.grid.h] #$tc+=1 #if $tc == 5 #$train << [args.state.ball.xy.x, args.state.ball.xy.y] #$tc = 0 #end #for t in $train #args.outputs.solids << [t[0],t[1],5,5,255,0,0]; #end endPhysics And Collisions - Collision With Object Removal - paddle.rb
# ./samples/04_physics_and_collisions/10_collision_with_object_removal/app/paddle.rb class Paddle attr_accessor :enabled def initialize () @x=WIDTH/2 @y=100 @width=100 @height=20 @speed=10 @xyCollision = LinearCollider.new({x: @x,y: @[email protected]+5}, {x: @[email protected], y: @[email protected]+5}) @xyCollision2 = LinearCollider.new({x: @x,y: @y}, {x: @[email protected], y: @y}, :pos) @xyCollision3 = LinearCollider.new({x: @x,y: @y}, {x: @x, y: @[email protected]+5}) @xyCollision4 = LinearCollider.new({x: @[email protected],y: @y}, {x: @[email protected], y: @[email protected]+5}, :pos) @enabled = true end def update args @xyCollision.resetPoints({x: @x,y: @[email protected]+5}, {x: @[email protected], y: @[email protected]+5}) @xyCollision2.resetPoints({x: @x,y: @y}, {x: @[email protected], y: @y}) @xyCollision3.resetPoints({x: @x,y: @y}, {x: @x, y: @[email protected]+5}) @xyCollision4.resetPoints({x: @[email protected],y: @y}, {x: @[email protected], y: @[email protected]+5}) @xyCollision.update args @xyCollision2.update args @xyCollision3.update args @xyCollision4.update args args.inputs.keyboard.key_held.left ||= false args.inputs.keyboard.key_held.right ||= false if not (args.inputs.keyboard.key_held.left == args.inputs.keyboard.key_held.right) if args.inputs.keyboard.key_held.left && @enabled @[email protected] elsif args.inputs.keyboard.key_held.right && @enabled @[email protected] end end xmin =WIDTH/4 xmax = 3*(WIDTH/4) @x = (@[email protected] > xmax) ? [email protected] : (@xPhysics And Collisions - Collision With Object Removal - tests.rb
# ./samples/04_physics_and_collisions/10_collision_with_object_removal/app/tests.rb # For advanced users: # You can put some quick verification tests here, any method # that starts with the `test_` will be run when you save this file. # Here is an example test and game # To run the test: ./dragonruby mygame --eval app/tests.rb --no-tick class MySuperHappyFunGame attr_gtk def tick outputs.solids << [100, 100, 300, 300] end end def test_universe args, assert game = MySuperHappyFunGame.new game.args = args game.tick assert.true! args.outputs.solids.length == 1, "failure: a solid was not added after tick" assert.false! 1 == 2, "failure: some how, 1 equals 2, the world is ending" puts "test_universe completed successfully" end puts "running tests" $gtk.reset 100 $gtk.log_level = :off $gtk.tests.startPhysics And Collisions - Collision With Object Removal - vector2d.rb
# ./samples/04_physics_and_collisions/10_collision_with_object_removal/app/vector2d.rb class Vector2d attr_accessor :x, :y def initialize x=0, y=0 @x=x @y=y end #returns a vector multiplied by scalar x #x [float] scalar def mult x r = Vector2d.new(0,0) [email protected]*x [email protected]*x r end # vect [Vector2d] vector to copy def copy vect Vector2d.new(@x, @y) end #returns a new vector equivalent to this+vect #vect [Vector2d] vector to add to self def add vect Vector2d.new(@x+vect.x,@y+vect.y) end #returns a new vector equivalent to this-vect #vect [Vector2d] vector to subtract to self def sub vect Vector2d.new(@x-vect.c, @y-vect.y) end #return the magnitude of the vector def mag ((@x**2)+(@y**2))**0.5 end #returns a new normalize version of the vector def normalize Vector2d.new(@x/mag, @y/mag) end #TODO delet? def distABS vect ((([email protected])**2+([email protected])**2)**0.5).abs() end endMouse - Mouse Click - main.rb
# ./samples/05_mouse/01_mouse_click/app/main.rb =begin APIs listing that haven't been encountered in previous sample apps: - product: Returns an array of all combinations of elements from all arrays. For example, [1,2].product([1,2]) would return the following array... [[1,1], [1,2], [2,1], [2,2]] More than two arrays can be given to product and it will still work, such as [1,2].product([1,2],[3,4]). What would product return in this case? Answer: [[1,1,3],[1,1,4],[1,2,3],[1,2,4],[2,1,3],[2,1,4],[2,2,3],[2,2,4]] - num1.fdiv(num2): Returns the float division (will have a decimal) of the two given numbers. For example, 5.fdiv(2) = 2.5 and 5.fdiv(5) = 1.0 - yield: Allows you to call a method with a code block and yield to that block. Reminders: - ARRAY#inside_rect?: Returns true or false depending on if the point is inside the rect. - String interpolation: Uses #{} syntax; everything between the #{ and the } is evaluated as Ruby code, and the placeholder is replaced with its corresponding value or result. - args.inputs.mouse.click: This property will be set if the mouse was clicked. - Ternary operator (?): Will evaluate a statement (just like an if statement) and perform an action if the result is true or another action if it is false. - reject: Removes elements from a collection if they meet certain requirements. - args.outputs.borders: An array. The values generate a border. The parameters are [X, Y, WIDTH, HEIGHT, RED, GREEN, BLUE] For more information about borders, go to mygame/documentation/03-solids-and-borders.md. - args.outputs.labels: An array. The values generate a label. The parameters are [X, Y, TEXT, SIZE, ALIGNMENT, RED, GREEN, BLUE, ALPHA, FONT STYLE] For more information about labels, go to mygame/documentation/02-labels. =end # This sample app is a classic game of Tic Tac Toe. class TicTacToe attr_accessor :_, :state, :outputs, :inputs, :grid, :gtk # Starts the game with player x's turn and creates an array (to_a) for space combinations. # Calls methods necessary for the game to run properly. def tick state.current_turn ||= :x state.space_combinations = [-1, 0, 1].product([-1, 0, 1]).to_a render_board input_board end # Uses borders to create grid squares for the game's board. Also outputs the game pieces using labels. def render_board square_size = 80 # Positions the game's board in the center of the screen. # Try removing what follows grid.w_half or grid.h_half and see how the position changes! board_left = grid.w_half - square_size * 1.5 board_top = grid.h_half - square_size * 1.5 # At first glance, the add(1) looks pretty trivial. But if you remove it, # you'll see that the positioning of the board would be skewed without it! # Or if you put 2 in the parenthesis, the pieces will be placed in the wrong squares # due to the change in board placement. outputs.borders << all_spaces do |x, y, space| # outputs borders for all board spaces space.border ||= [ board_left + x.add(1) * square_size, # space.border is initialized using this definition board_top + y.add(1) * square_size, square_size, square_size ] end # Again, the calculations ensure that the piece is placed in the center of the grid square. # Remove the '- 20' and the piece will be placed at the top of the grid square instead of the center. outputs.labels << filled_spaces do |x, y, space| # put label in each filled space of board label board_left + x.add(1) * square_size + square_size.fdiv(2), board_top + y.add(1) * square_size + square_size - 20, space.piece # text of label, either "x" or "o" end # Uses a label to output whether x or o won, or if a draw occurred. # If the game is ongoing, a label shows whose turn it currently is. outputs.labels << if state.x_won label grid.w_half, grid.top - 80, "x won" # the '-80' positions the label 80 pixels lower than top elsif state.o_won label grid.w_half, grid.top - 80, "o won" # grid.w_half positions the label in the center horizontally elsif state.draw label grid.w_half, grid.top - 80, "a draw" else # if no one won and the game is ongoing label grid.w_half, grid.top - 80, "turn: #{state.current_turn}" end end # Calls the methods responsible for handling user input and determining the winner. # Does nothing unless the mouse is clicked. def input_board return unless inputs.mouse.click input_place_piece input_restart_game determine_winner end # Handles user input for placing pieces on the board. def input_place_piece return if state.game_over # Checks to find the space that the mouse was clicked inside of, and makes sure the space does not already # have a piece in it. __, __, space = all_spaces.find do |__, __, space| inputs.mouse.click.point.inside_rect?(space.border) && !space.piece end # The piece that goes into the space belongs to the player whose turn it currently is. return unless space space.piece = state.current_turn # This ternary operator statement allows us to change the current player's turn. # If it is currently x's turn, it becomes o's turn. If it is not x's turn, it become's x's turn. state.current_turn = state.current_turn == :x ? :o : :x end # Resets the game. def input_restart_game return unless state.game_over gtk.reset end # Checks if x or o won the game. # If neither player wins and all nine squares are filled, a draw happens. # Once a player is chosen as the winner or a draw happens, the game is over. def determine_winner state.x_won = won? :x # evaluates to either true or false (boolean values) state.o_won = won? :o state.draw = true if filled_spaces.length == 9 && !state.x_won && !state.o_won state.game_over = state.x_won || state.o_won || state.draw end # Determines if a player won by checking if there is a horizontal match or vertical match. # Horizontal_match and vertical_match have boolean values. If either is true, the game has been won. def won? piece # performs action on all space combinations won = [[-1, 0, 1]].product([-1, 0, 1]).map do |xs, y| # Checks if the 3 grid spaces with the same y value (or same row) and # x values that are next to each other have pieces that belong to the same player. # Remember, the value of piece is equal to the current turn (which is the player). horizontal_match = state.spaces[xs[0]][y].piece == piece && state.spaces[xs[1]][y].piece == piece && state.spaces[xs[2]][y].piece == piece # Checks if the 3 grid spaces with the same x value (or same column) and # y values that are next to each other have pieces that belong to the same player. # The && represents an "and" statement: if even one part of the statement is false, # the entire statement evaluates to false. vertical_match = state.spaces[y][xs[0]].piece == piece && state.spaces[y][xs[1]].piece == piece && state.spaces[y][xs[2]].piece == piece horizontal_match || vertical_match # if either is true, true is returned end # Sees if there is a diagonal match, starting from the bottom left and ending at the top right. # Is added to won regardless of whether the statement is true or false. won << (state.spaces[-1][-1].piece == piece && # bottom left state.spaces[ 0][ 0].piece == piece && # center state.spaces[ 1][ 1].piece == piece) # top right # Sees if there is a diagonal match, starting at the bottom right and ending at the top left # and is added to won. won << (state.spaces[ 1][-1].piece == piece && # bottom right state.spaces[ 0][ 0].piece == piece && # center state.spaces[-1][ 1].piece == piece) # top left # Any false statements (meaning false diagonal matches) are rejected from won won.reject_false.any? end # Defines filled spaces on the board by rejecting all spaces that do not have game pieces in them. # The ! before a statement means "not". For example, we are rejecting any space combinations that do # NOT have pieces in them. def filled_spaces state.space_combinations .reject { |x, y| !state.spaces[x][y].piece } # reject spaces with no pieces in them .map do |x, y| if block_given? yield x, y, state.spaces[x][y] else [x, y, state.spaces[x][y]] # sets definition of space end end end # Defines all spaces on the board. def all_spaces if !block_given? state.space_combinations.map do |x, y| [x, y, state.spaces[x][y]] # sets definition of space end else # if a block is given (block_given? is true) state.space_combinations.map do |x, y| yield x, y, state.spaces[x][y] # yield if a block is given end end end # Sets values for a label, such as the position, value, size, alignment, and color. def label x, y, value [x, y + 10, value, 20, 1, 0, 0, 0] end end $tic_tac_toe = TicTacToe.new def tick args $tic_tac_toe._ = args $tic_tac_toe.state = args.state $tic_tac_toe.outputs = args.outputs $tic_tac_toe.inputs = args.inputs $tic_tac_toe.grid = args.grid $tic_tac_toe.gtk = args.gtk $tic_tac_toe.tick tick_instructions args, "Sample app shows how to work with mouse clicks." end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label endMouse - Mouse Move - main.rb
# ./samples/05_mouse/02_mouse_move/app/main.rb =begin Reminders: - num1.greater(num2): Returns the greater value. For example, if we have the command puts 4.greater(3) the number 4 would be printed to the console since it has a greater value than 3. Similar to lesser, which returns the lesser value. - find_all: Finds all elements of a collection that meet certain requirements. For example, in this sample app, we're using find_all to find all zombies that have intersected or hit the player's sprite since these zombies have been killed. - args.inputs.keyboard.key_down.KEY: Determines if a key is being held or pressed. Stores the frame the "down" event occurred. For more information about the keyboard, go to mygame/documentation/06-keyboard.md. - args.outputs.sprites: An array. The values generate a sprite. The parameters are [X, Y, WIDTH, HEIGHT, PATH, ANGLE, ALPHA, RED, GREEN, BLUE] For more information about sprites, go to mygame/documentation/05-sprites.md. - args.state.new_entity: Used when we want to create a new object, like a sprite or button. When we want to create a new object, we can declare it as a new entity and then define its properties. (Remember, you can use state to define ANY property and it will be retained across frames.) - String interpolation: Uses #{} syntax; everything between the #{ and the } is evaluated as Ruby code, and the placeholder is replaced with its corresponding value or result. - map: Ruby method used to transform data; used in arrays, hashes, and collections. Can be used to perform an action on every element of a collection, such as multiplying each element by 2 or declaring every element as a new entity. - sample: Chooses a random element from the array. - reject: Removes elements that meet certain requirements. In this sample app, we're removing/rejecting zombies that reach the center of the screen. We're also rejecting zombies that were killed more than 30 frames ago. =end # This sample app allows users to move around the screen in order to kill zombies. Zombies appear from every direction so the goal # is to kill the zombies as fast as possible! class ProtectThePuppiesFromTheZombies attr_accessor :grid, :inputs, :state, :outputs # Calls the methods necessary for the game to run properly. def tick defaults render calc input end # Sets default values for the zombies and for the player. # Initialization happens only in the first frame. def defaults state.flash_at ||= 0 state.zombie_min_spawn_rate ||= 60 state.zombie_spawn_countdown ||= random_spawn_countdown state.zombie_min_spawn_rate state.zombies ||= [] state.killed_zombies ||= [] # Declares player as a new entity and sets its properties. # The player begins the game in the center of the screen, not moving in any direction. state.player ||= state.new_entity(:player, { x: 640, y: 360, attack_angle: 0, dx: 0, dy: 0 }) end # Outputs a gray background. # Calls the methods needed to output the player, zombies, etc onto the screen. def render outputs.solids << [grid.rect, 100, 100, 100] render_zombies render_killed_zombies render_player render_flash end # Outputs the zombies on the screen and sets values for the sprites, such as the position, width, height, and animation. def render_zombies outputs.sprites << state.zombies.map do |z| # performs action on all zombies in the collection z.sprite = [z.x, z.y, 4 * 3, 8 * 3, animation_sprite(z)].sprite # sets definition for sprite, calls animation_sprite method z.sprite end end # Outputs sprites of killed zombies, and displays a slash image to show that a zombie has been killed. def render_killed_zombies outputs.sprites << state.killed_zombies.map do |z| # performs action on all killed zombies in collection z.sprite = [z.x, z.y, 4 * 3, 8 * 3, animation_sprite(z, z.death_at), # calls animation_sprite method 0, # angle 255 * z.death_at.ease(30, :flip)].sprite # transparency of a zombie changes when they die # change the value of 30 and see what happens when a zombie is killed # Sets values to output the slash over the zombie's sprite when a zombie is killed. # The slash is tilted 45 degrees from the angle of the player's attack. # Change the 3 inside scale_rect to 30 and the slash will be HUGE! Scale_rect positions # the slash over the killed zombie's sprite. [z.sprite, [z.sprite.rect, 'sprites/slash.png', 45 + state.player.attack_angle_on_click, z.sprite.a].scale_rect(3, 0.5, 0.5)] end end # Outputs the player sprite using the images in the sprites folder. def render_player state.player_sprite = [state.player.x, state.player.y, 4 * 3, 8 * 3, "sprites/player-#{animation_index(state.player.created_at_elapsed)}.png"] # string interpolation outputs.sprites << state.player_sprite # Outputs a small red square that previews the angles that the player can attack in. # It can be moved in a perfect circle around the player to show possible movements. # Change the 60 in the parenthesis and see what happens to the movement of the red square. outputs.solids << [state.player.x + state.player.attack_angle.vector_x(60), state.player.y + state.player.attack_angle.vector_y(60), 3, 3, 255, 0, 0] end # Renders flash as a solid. The screen turns white for 10 frames when a zombie is killed. def render_flash return if state.flash_at.elapsed_time > 10 # return if more than 10 frames have passed since flash. # Transparency gradually changes (or eases) during the 10 frames of flash. outputs.primitives << [grid.rect, 255, 255, 255, 255 * state.flash_at.ease(10, :flip)].solid end # Calls all methods necessary for performing calculations. def calc calc_spawn_zombie calc_move_zombies calc_player calc_kill_zombie end # Decreases the zombie spawn countdown by 1 if it has a value greater than 0. def calc_spawn_zombie if state.zombie_spawn_countdown > 0 state.zombie_spawn_countdown -= 1 return end # New zombies are created, positioned on the screen, and added to the zombies collection. state.zombies << state.new_entity(:zombie) do |z| # each zombie is declared a new entity if rand > 0.5 z.x = grid.rect.w.randomize(:ratio) # random x position on screen (within grid scope) z.y = [-10, 730].sample # y position is set to either -10 or 730 (randomly chosen) # the possible values exceed the screen's scope so zombies appear to be coming from far away else z.x = [-10, 1290].sample # x position is set to either -10 or 1290 (randomly chosen) z.y = grid.rect.w.randomize(:ratio) # random y position on screen end end # Calls random_spawn_countdown method (determines how fast new zombies appear) state.zombie_spawn_countdown = random_spawn_countdown state.zombie_min_spawn_rate state.zombie_min_spawn_rate -= 1 # set to either the current zombie_min_spawn_rate or 0, depending on which value is greater state.zombie_min_spawn_rate = state.zombie_min_spawn_rate.greater(0) end # Moves all zombies towards the center of the screen. # All zombies that reach the center (640, 360) are rejected from the zombies collection and disappear. def calc_move_zombies state.zombies.each do |z| # for each zombie in the collection z.y = z.y.towards(360, 0.1) # move the zombie towards the center (640, 360) at a rate of 0.1 z.x = z.x.towards(640, 0.1) # change 0.1 to 1.1 and see how much faster the zombies move to the center end state.zombies = state.zombies.reject { |z| z.y == 360 && z.x == 640 } # remove zombies that are in center end # Calculates the position and movement of the player on the screen. def calc_player state.player.x += state.player.dx # changes x based on dx (change in x) state.player.y += state.player.dy # changes y based on dy (change in y) state.player.dx *= 0.9 # scales dx down state.player.dy *= 0.9 # scales dy down # Compares player's x to 1280 to find lesser value, then compares result to 0 to find greater value. # This ensures that the player remains within the screen's scope. state.player.x = state.player.x.lesser(1280).greater(0) state.player.y = state.player.y.lesser(720).greater(0) # same with player's y end # Finds all zombies that intersect with the player's sprite. These zombies are removed from the zombies collection # and added to the killed_zombies collection since any zombie that intersects with the player is killed. def calc_kill_zombie # Find all zombies that intersect with the player. They are considered killed. killed_this_frame = state.zombies.find_all { |z| z.sprite.intersect_rect? state.player_sprite } state.zombies = state.zombies - killed_this_frame # remove newly killed zombies from zombies collection state.killed_zombies += killed_this_frame # add newly killed zombies to killed zombies if killed_this_frame.length > 0 # if atleast one zombie was killed in the frame state.flash_at = state.tick_count # flash_at set to the frame when the zombie was killed # Don't forget, the rendered flash lasts for 10 frames after the zombie is killed (look at render_flash method) end # Sets the tick_count (passage of time) as the value of the death_at variable for each killed zombie. # Death_at stores the frame a zombie was killed. killed_this_frame.each do |z| z.death_at = state.tick_count end # Zombies are rejected from the killed_zombies collection depending on when they were killed. # They are rejected if more than 30 frames have passed since their death. state.killed_zombies = state.killed_zombies.reject { |z| state.tick_count - z.death_at > 30 } end # Uses input from the user to move the player around the screen. def input # If the "a" key or left key is pressed, the x position of the player decreases. # Otherwise, if the "d" key or right key is pressed, the x position of the player increases. if inputs.keyboard.key_held.a || inputs.keyboard.key_held.left state.player.x -= 5 elsif inputs.keyboard.key_held.d || inputs.keyboard.key_held.right state.player.x += 5 end # If the "w" or up key is pressed, the y position of the player increases. # Otherwise, if the "s" or down key is pressed, the y position of the player decreases. if inputs.keyboard.key_held.w || inputs.keyboard.key_held.up state.player.y += 5 elsif inputs.keyboard.key_held.s || inputs.keyboard.key_held.down state.player.y -= 5 end # Sets the attack angle so the player can move and attack in the precise direction it wants to go. # If the mouse is moved, the attack angle is changed (based on the player's position and mouse position). # Attack angle also contributes to the position of red square. if inputs.mouse.moved state.player.attack_angle = inputs.mouse.position.angle_from [state.player.x, state.player.y] end if inputs.mouse.click && state.player.dx < 0.5 && state.player.dy < 0.5 state.player.attack_angle_on_click = inputs.mouse.position.angle_from [state.player.x, state.player.y] state.player.attack_angle = state.player.attack_angle_on_click # player's attack angle is set state.player.dx = state.player.attack_angle.vector_x(25) # change in player's position state.player.dy = state.player.attack_angle.vector_y(25) end end # Sets the zombie spawn's countdown to a random number. # How fast zombies appear (change the 60 to 6 and too many zombies will appear at once!) def random_spawn_countdown minimum 10.randomize(:ratio, :sign).to_i + 60 end # Helps to iterate through the images in the sprites folder by setting the animation index. # 3 frames is how long to show an image, and 6 is how many images to flip through. def animation_index at at.idiv(3).mod(6) end # Animates the zombies by using the animation index to go through the images in the sprites folder. def animation_sprite zombie, at = nil at ||= zombie.created_at_elapsed # how long it is has been since a zombie was created index = animation_index at "sprites/zombie-#{index}.png" # string interpolation to iterate through images end end $protect_the_puppies_from_the_zombies = ProtectThePuppiesFromTheZombies.new def tick args $protect_the_puppies_from_the_zombies.grid = args.grid $protect_the_puppies_from_the_zombies.inputs = args.inputs $protect_the_puppies_from_the_zombies.state = args.state $protect_the_puppies_from_the_zombies.outputs = args.outputs $protect_the_puppies_from_the_zombies.tick tick_instructions args, "How to get the mouse position and translate it to an x, y position using .vector_x and .vector_y. CLICK to play." end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label endMouse - Mouse Move Paint App - main.rb
# ./samples/05_mouse/03_mouse_move_paint_app/app/main.rb =begin APIs listing that haven't been encountered in previous sample apps: - Floor: Method that returns an integer number smaller than or equal to the original with no decimal. For example, if we have a variable, a = 13.7, and we called floor on it, it would look like this... puts a.floor() which would print out 13. (There is also a ceil method, which returns an integer number greater than or equal to the original with no decimal. If we had called ceil on the variable a, the result would have been 14.) Reminders: - Hashes: Collection of unique keys and their corresponding values. The value can be found using their keys. For example, if we have a "numbers" hash that stores numbers in English as the key and numbers in Spanish as the value, we'd have a hash that looks like this... numbers = { "one" => "uno", "two" => "dos", "three" => "tres" } and on it goes. Now if we wanted to find the corresponding value of the "one" key, we could say puts numbers["one"] which would print "uno" to the console. - args.state.new_entity: Used when we want to create a new object, like a sprite or button. In this sample app, new_entity is used to create a new button that clears the grid. (Remember, you can use state to define ANY property and it will be retained across frames.) - args.inputs.mouse.click.point.(x|y): The x and y location of the mouse. - args.inputs.mouse.click.point.created_at: The frame the mouse click occurred in. - args.outputs.labels: An array. The values in the array generate a label. The parameters are [X, Y, TEXT, SIZE, ALIGN, RED, GREEN, BLUE, ALPHA, FONT STYLE] For more information about labels, go to mygame/documentation/02-labels.md. - ARRAY#inside_rect?: Returns true or false depending on if the point is inside the rect. =end # This sample app shows an empty grid that the user can paint on. # To paint, the user must keep their mouse presssed and drag it around the grid. # The "clear" button allows users to clear the grid so they can start over. class PaintApp attr_accessor :inputs, :state, :outputs, :grid, :args # Runs methods necessary for the game to function properly. def tick print_title add_grid check_click draw_buttons end # Prints the title onto the screen by using a label. # Also separates the title from the grid with a line as a horizontal separator. def print_title args.outputs.labels << [ 640, 700, 'Paint!', 0, 1 ] outputs.lines << horizontal_separator(660, 0, 1280) end # Sets the starting position, ending position, and color for the horizontal separator. # The starting and ending positions have the same y values. def horizontal_separator y, x, x2 [x, y, x2, y, 150, 150, 150] end # Sets the starting position, ending position, and color for the vertical separator. # The starting and ending positions have the same x values. def vertical_separator x, y, y2 [x, y, x, y2, 150, 150, 150] end # Outputs a border and a grid containing empty squares onto the screen. def add_grid # Sets the x, y, height, and width of the grid. # There are 31 horizontal lines and 31 vertical lines in the grid. # Feel free to count them yourself before continuing! x, y, h, w = 640 - 500/2, 640 - 500, 500, 500 # calculations done so the grid appears in screen's center lines_h = 31 lines_v = 31 # Sets values for the grid's border, grid lines, and filled squares. # The filled_squares variable is initially set to an empty array. state.grid_border ||= [ x, y, h, w ] # definition of grid's outer border state.grid_lines ||= draw_grid(x, y, h, w, lines_h, lines_v) # calls draw_grid method state.filled_squares ||= [] # there are no filled squares until the user fills them in # Outputs the grid lines, border, and filled squares onto the screen. outputs.lines.concat state.grid_lines outputs.borders << state.grid_border outputs.solids << state.filled_squares end # Draws the grid by adding in vertical and horizontal separators. def draw_grid x, y, h, w, lines_h, lines_v # The grid starts off empty. grid = [] # Calculates the placement and adds horizontal lines or separators into the grid. curr_y = y # start at the bottom of the box dist_y = h / (lines_h + 1) # finds distance to place horizontal lines evenly throughout 500 height of grid lines_h.times do curr_y += dist_y # increment curr_y by the distance between the horizontal lines grid << horizontal_separator(curr_y, x, x + w - 1) # add a separator into the grid end # Calculates the placement and adds vertical lines or separators into the grid. curr_x = x # now start at the left of the box dist_x = w / (lines_v + 1) # finds distance to place vertical lines evenly throughout 500 width of grid lines_v.times do curr_x += dist_x # increment curr_x by the distance between the vertical lines grid << vertical_separator(curr_x, y + 1, y + h) # add separator end # paint_grid uses a hash to assign values to keys. state.paint_grid ||= {"x" => x, "y" => y, "h" => h, "w" => w, "lines_h" => lines_h, "lines_v" => lines_v, "dist_x" => dist_x, "dist_y" => dist_y } return grid end # Checks if the user is keeping the mouse pressed down and sets the mouse_hold variable accordingly using boolean values. # If the mouse is up, the user cannot drag the mouse. def check_click if inputs.mouse.down #is mouse up or down? state.mouse_held = true # mouse is being held down elsif inputs.mouse.up # if mouse is up state.mouse_held = false # mouse is not being held down or dragged state.mouse_dragging = false end if state.mouse_held && # mouse needs to be down !inputs.mouse.click && # must not be first click ((inputs.mouse.previous_click.point.x - inputs.mouse.position.x).abs > 15) # Need to move 15 pixels before "drag" state.mouse_dragging = true end # If the user clicks their mouse inside the grid, the search_lines method is called with a click input type. if ((inputs.mouse.click) && (inputs.mouse.click.point.inside_rect? state.grid_border)) search_lines(inputs.mouse.click.point, :click) # If the user drags their mouse inside the grid, the search_lines method is called with a drag input type. elsif ((state.mouse_dragging) && (inputs.mouse.position.inside_rect? state.grid_border)) search_lines(inputs.mouse.position, :drag) end end # Sets the definition of a grid box and handles user input to fill in or clear grid boxes. def search_lines (point, input_type) point.x -= state.paint_grid["x"] # subtracts the value assigned to the "x" key in the paint_grid hash point.y -= state.paint_grid["y"] # subtracts the value assigned to the "y" key in the paint_grid hash # Remove code following the .floor and see what happens when you try to fill in grid squares point.x = (point.x / state.paint_grid["dist_x"]).floor * state.paint_grid["dist_x"] point.y = (point.y / state.paint_grid["dist_y"]).floor * state.paint_grid["dist_y"] point.x += state.paint_grid["x"] point.y += state.paint_grid["y"] # Sets definition of a grid box, meaning its x, y, width, and height. # Floor is called on the point.x and point.y variables. # Ceil method is called on values of the distance hash keys, setting the width and height of a box. grid_box = [ point.x.floor, point.y.floor, state.paint_grid["dist_x"].ceil, state.paint_grid["dist_y"].ceil ] if input_type == :click # if user clicks their mouse if state.filled_squares.include? grid_box # if grid box is already filled in state.filled_squares.delete grid_box # box is cleared and removed from filled_squares else state.filled_squares << grid_box # otherwise, box is filled in and added to filled_squares end elsif input_type == :drag # if user drags mouse unless state.filled_squares.include? grid_box # unless the grid box dragged over is already filled in state.filled_squares << grid_box # the box is filled in and added to filled_squares end end end # Creates and outputs a "Clear" button on the screen using a label and a border. # If the button is clicked, the filled squares are cleared, making the filled_squares collection empty. def draw_buttons x, y, w, h = 390, 50, 240, 50 state.clear_button ||= state.new_entity(:button_with_fade) # The x and y positions are set to display the label in the center of the button. # Try changing the first two parameters to simply x, y and see what happens to the text placement! state.clear_button.label ||= [x + w.half, y + h.half + 10, "Clear", 0, 1] # placed in center of border state.clear_button.border ||= [x, y, w, h] # If the mouse is clicked inside the borders of the clear button, # the filled_squares collection is emptied and the squares are cleared. if inputs.mouse.click && inputs.mouse.click.point.inside_rect?(state.clear_button.border) state.clear_button.clicked_at = inputs.mouse.click.created_at # time (frame) the click occurred state.filled_squares.clear inputs.mouse.previous_click = nil end outputs.labels << state.clear_button.label outputs.borders << state.clear_button.border # When the clear button is clicked, the color of the button changes # and the transparency changes, as well. If you change the time from # 0.25.seconds to 1.25.seconds or more, the change will last longer. if state.clear_button.clicked_at outputs.solids << [x, y, w, h, 0, 180, 80, 255 * state.clear_button.clicked_at.ease(0.25.seconds, :flip)] end end end $paint_app = PaintApp.new def tick args $paint_app.inputs = args.inputs $paint_app.state = args.state $paint_app.grid = args.grid $paint_app.args = args $paint_app.outputs = args.outputs $paint_app.tick tick_instructions args, "How to create a simple paint app. CLICK and HOLD to draw." end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label endMouse - Coordinate Systems - main.rb
# ./samples/05_mouse/04_coordinate_systems/app/main.rb =begin APIs listing that haven't been encountered in previous sample apps: - args.inputs.mouse.click.position: Coordinates of the mouse's position on the screen. Unlike args.inputs.mouse.click.point, the mouse does not need to be pressed down for position to know the mouse's coordinates. For more information about the mouse, go to mygame/documentation/07-mouse.md. Reminders: - args.inputs.mouse.click: This property will be set if the mouse was clicked. - args.inputs.mouse.click.point.(x|y): The x and y location of the mouse. - String interpolation: Uses #{} syntax; everything between the #{ and the } is evaluated as Ruby code, and the placeholder is replaced with its corresponding value or result. In this sample app, string interpolation is used to show the current position of the mouse in a label. - args.outputs.labels: An array that generates a label. The parameters are [X, Y, TEXT, SIZE, ALIGN, RED, GREEN, BLUE, ALPHA, FONT STYLE] For more information about labels, go to mygame/documentation/02-labels.md. - args.outputs.solids: An array that generates a solid. The parameters are [X, Y, WIDTH, HEIGHT, RED, GREEN, BLUE, ALPHA] For more information about solids, go to mygame/documentation/03-solids-and-borders.md. - args.outputs.lines: An array that generates a line. The parameters are [X, Y, X2, Y2, RED, GREEN, BLUE, ALPHA] For more information about lines, go to mygame/documentation/04-lines.md. =end # This sample app shows a coordinate system or grid. The user can move their mouse around the screen and the # coordinates of their position on the screen will be displayed. Users can choose to view one quadrant or # four quadrants by pressing the button. def tick args # The addition and subtraction in the first two parameters of the label and solid # ensure that the outputs don't overlap each other. Try removing them and see what happens. pos = args.inputs.mouse.position # stores coordinates of mouse's position args.outputs.labels << [pos.x + 10, pos.y + 10, "#{pos}"] # outputs label of coordinates args.outputs.solids << [pos.x - 2, pos.y - 2, 5, 5] # outputs small blackk box placed where mouse is hovering button = [0, 0, 370, 50] # sets definition of toggle button args.outputs.borders << button # outputs button as border (not filled in) args.outputs.labels << [10, 35, "click here toggle coordinate system"] # label of button args.outputs.lines << [ 0, -720, 0, 720] # vertical line dividing quadrants args.outputs.lines << [-1280, 0, 1280, 0] # horizontal line dividing quadrants if args.inputs.mouse.click # if the user clicks the mouse pos = args.inputs.mouse.click.point # pos's value is point where user clicked (coordinates) if pos.inside_rect? button # if the click occurred inside the button if args.grid.name == :bottom_left # if the grid shows bottom left as origin args.grid.origin_center! # origin will be shown in center else args.grid.origin_bottom_left! # otherwise, the view will change to show bottom left as origin end end end tick_instructions args, "Sample app shows the two supported coordinate systems in Game Toolkit." end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label endSave Load - Save Load Game - main.rb
# ./samples/06_save_load/01_save_load_game/app/main.rb =begin APIs listing that haven't been encountered in previous sample apps: - Symbol (:): Ruby object with a name and an internal ID. Symbols are useful because with a given symbol name, you can refer to the same object throughout a Ruby program. In this sample app, we're using symbols for our buttons. We have buttons that light fires, save, load, etc. Each of these buttons has a distinct symbol like :light_fire, :save_game, :load_game, etc. - to_sym: Returns the symbol corresponding to the given string; creates the symbol if it does not already exist. For example, 'car'.to_sym would return the symbol :car. - last: Returns the last element of an array. Reminders: - num1.lesser(num2): finds the lower value of the given options. For example, in the statement a = 4.lesser(3) 3 has a lower value than 4, which means that the value of a would be set to 3, but if the statement had been a = 4.lesser(5) 4 has a lower value than 5, which means that the value of a would be set to 4. - num1.fdiv(num2): returns the float division (will have a decimal) of the two given numbers. For example, 5.fdiv(2) = 2.5 and 5.fdiv(5) = 1.0 - String interpolation: uses #{} syntax; everything between the #{ and the } is evaluated as Ruby code, and the placeholder is replaced with its corresponding value or result. - args.outputs.labels: An array. Values generate a label. Parameters are [X, Y, TEXT, SIZE, ALIGN, RED, GREEN, BLUE, ALPHA, FONT STYLE] For more information, go to mygame/documentation/02-labels.md. - ARRAY#inside_rect?: An array with at least two values is considered a point. An array with at least four values is considered a rect. The inside_rect? function returns true or false depending on if the point is inside the rect. =end # This code allows users to perform different tasks, such as saving and loading the game. # Users also have options to reset the game and light a fire. class TextedBasedGame # Contains methods needed for game to run properly. # Increments tick count by 1 each time it runs (60 times in a single second) def tick default show_intro state.engine_tick_count += 1 tick_fire end # Sets default values. # The ||= ensures that a variable's value is only set to the value following the = sign # if the value has not already been set before. Intialization happens only in the first frame. def default state.engine_tick_count ||= 0 state.active_module ||= :room state.fire_progress ||= 0 state.fire_ready_in ||= 10 state.previous_fire ||= :dead state.fire ||= :dead end def show_intro return unless state.engine_tick_count == 0 # return unless the game just started set_story_line "awake." # calls set_story_line method, sets to "awake" end # Sets story line. def set_story_line story_line state.story_line = story_line # story line set to value of parameter state.active_module = :alert # active module set to alert end # Clears story line. def clear_storyline state.active_module = :none # active module set to none state.story_line = nil # story line is cleared, set to nil (or empty) end # Determines fire progress (how close the fire is to being ready to light). def tick_fire return if state.active_module == :alert # return if active module is alert state.fire_progress += 1 # increment fire progress # fire_ready_in is 10. The fire_progress is either the current value or 10, whichever has a lower value. state.fire_progress = state.fire_progress.lesser(state.fire_ready_in) end # Sets the value of fire (whether it is dead or roaring), and the story line def light_fire return unless fire_ready? # returns unless the fire is ready to be lit state.fire = :roaring # fire is lit, set to roaring state.fire_progress = 0 # the fire progress returns to 0, since the fire has been lit if state.fire != state.previous_fire set_story_line "the fire is #{state.fire}." # the story line is set using string interpolation state.previous_fire = state.fire end end # Checks if the fire is ready to be lit. Returns a boolean value. def fire_ready? # If fire_progress (value between 0 and 10) is equal to fire_ready_in (value of 10), # the fire is ready to be lit. state.fire_progress == state.fire_ready_in end # Divides the value of the fire_progress variable by 10 to determine how close the user is to # being able to light a fire. def light_fire_progress state.fire_progress.fdiv(10) # float division end # Defines fire as the state.fire variable. def fire state.fire end # Sets the title of the room. def room_title return "a room that is dark" if state.fire == :dead # room is dark if the fire is dead return "a room that is lit" # room is lit if the fire is not dead end # Sets the active_module to room. def go_to_room state.active_module = :room end # Defines active_module as the state.active_module variable. def active_module state.active_module end # Defines story_line as the state.story_line variable. def story_line state.story_line end # Update every 60 frames (or every second) def should_tick? state.tick_count.mod_zero?(60) end # Sets the value of the game state provider. def initialize game_state_provider @game_state_provider = game_state_provider end # Defines the game state. # Any variable prefixed with an @ symbol is an instance variable. def state @game_state_provider.state end # Saves the state of the game in a text file called game_state.txt. def save $gtk.serialize_state('game_state.txt', state) end # Loads the game state from the game_state.txt text file. # If the load is unsuccessful, the user is informed since the story line indicates the failure. def load parsed_state = $gtk.deserialize_state('game_state.txt') if !parsed_state set_story_line "no game to load. press save first." else $gtk.args.state = parsed_state end end # Resets the game. def reset $gtk.reset end end class TextedBasedGamePresenter attr_accessor :state, :outputs, :inputs # Creates empty collection called highlights. # Calls methods necessary to run the game. def tick state.layout.highlights ||= [] game.tick if game.should_tick? render process_input end # Outputs a label of the tick count (passage of time) and calls all render methods. def render outputs.labels << [10, 30, state.tick_count] render_alert render_room render_highlights end # Outputs a label onto the screen that shows the story line, and also outputs a "close" button. def render_alert return unless game.active_module == :alert outputs.labels << [640, 480, game.story_line, 5, 1] # outputs story line label outputs.primitives << button(:alert_dismiss, 490, 380, "close") # positions "close" button under story line end def render_room return unless game.active_module == :room outputs.labels << [640, 700, game.room_title, 4, 1] # outputs room title label at top of screen # The parameters for these outputs are (symbol, x, y, text, value/percentage) and each has a y value # that positions it 60 pixels lower than the previous output. # outputs the light_fire_progress bar, uses light_fire_progress for its percentage (which changes bar's appearance) outputs.primitives << progress_bar(:light_fire, 490, 600, "light fire", game.light_fire_progress) outputs.primitives << button( :save_game, 490, 540, "save") # outputs save button outputs.primitives << button( :load_game, 490, 480, "load") # outputs load button outputs.primitives << button( :reset_game, 490, 420, "reset") # outputs reset button outputs.labels << [640, 30, "the fire is #{game.fire}", 0, 1] # outputs fire label at bottom of screen end # Outputs a collection of highlights using an array to set their values, and also rejects certain values from the collection. def render_highlights state.layout.highlights.each do |h| # for each highlight in the collection h.lifetime -= 1 # decrease the value of its lifetime end outputs.solids << state.layout.highlights.map do |h| # outputs highlights collection [h.x, h.y, h.w, h.h, h.color, 255 * h.lifetime / h.max_lifetime] # sets definition for each highlight # transparency changes; divide lifetime by max_lifetime, multiply result by 255 end # reject highlights from collection that have no remaining lifetime state.layout.highlights = state.layout.highlights.reject { |h| h.lifetime <= 0 } end # Checks whether or not a button was clicked. # Returns a boolean value. def process_input button = button_clicked? # calls button_clicked? method end # Returns a boolean value. # Finds the button that was clicked from the button list and determines what method to call. # Adds a highlight to the highlights collection. def button_clicked? return nil unless click_pos # return nil unless click_pos holds coordinates of mouse click button = @button_list.find do |k, v| # goes through button_list to find button clicked click_pos.inside_rect? v[:primitives].last.rect # was the mouse clicked inside the rect of button? end return unless button # return unless a button was clicked method_to_call = "#{button[0]}_clicked".to_sym # sets method_to_call to symbol (like :save_game or :load_game) if self.respond_to? method_to_call # returns true if self responds to the given method (method actually exists) border = button[1][:primitives].last # sets border definition using value of last key in button list hash # declares each highlight as a new entity, sets properties state.layout.highlights << state.new_entity(:highlight) do |h| h.x = border.x h.y = border.y h.w = border.w h.h = border.h h.max_lifetime = 10 h.lifetime = h.max_lifetime h.color = [120, 120, 180] # sets color to shade of purple end self.send method_to_call # invoke method identified by symbol else # otherwise, if self doesn't respond to given method border = button[1][:primitives].last # sets border definition using value of last key in hash # declares each highlight as a new entity, sets properties state.layout.highlights << state.new_entity(:highlight) do |h| h.x = border.x h.y = border.y h.w = border.w h.h = border.h h.max_lifetime = 4 # different max_lifetime than the one set if respond_to? had been true h.lifetime = h.max_lifetime h.color = [120, 80, 80] # sets color to dark color end # instructions for users on how to add the missing method_to_call to the code puts "It looks like #{method_to_call} doesn't exists on TextedBasedGamePresenter. Please add this method:" puts "Just copy the code below and put it in the #{TextedBasedGamePresenter} class definition." puts "" puts "```" puts "class TextedBasedGamePresenter <--- find this class and put the method below in it" puts "" puts " def #{method_to_call}" puts " puts 'Yay that worked!'" puts " end" puts "" puts "end <-- make sure to put the #{method_to_call} method in between the `class` word and the final `end` statement." puts "```" puts "" end end # Returns the position of the mouse when it is clicked. def click_pos return nil unless inputs.mouse.click # returns nil unless the mouse was clicked return inputs.mouse.click.point # returns location of mouse click (coordinates) end # Creates buttons for the button_list and sets their values using a hash (uses symbols as keys) def button id, x, y, text @button_list[id] ||= { # assigns values to hash keys id: id, text: text, primitives: [ [x + 10, y + 30, text, 2, 0].label, # positions label inside border [x, y, 300, 50].border, # sets definition of border ] } @button_list[id][:primitives] # returns label and border for buttons end # Creates a progress bar (used for lighting the fire) and sets its values. def progress_bar id, x, y, text, percentage @button_list[id] = { # assigns values to hash keys id: id, text: text, primitives: [ [x, y, 300, 50, 100, 100, 100].solid, # sets definition for solid (which fills the bar with gray) [x + 10, y + 30, text, 2, 0].label, # sets definition for label, positions inside border [x, y, 300, 50].border, # sets definition of border ] } # Fills progress bar based on percentage. If the fire was ready to be lit (100%) and we multiplied by # 100, only 1/3 of the bar would only be filled in. 200 would cause only 2/3 to be filled in. @button_list[id][:primitives][0][2] = 300 * percentage @button_list[id][:primitives] end # Defines the game. def game @game end # Initalizes the game and creates an empty list of buttons. def initialize @game = TextedBasedGame.new self @button_list ||= {} end # Clears the storyline and takes the user to the room. def alert_dismiss_clicked game.clear_storyline game.go_to_room end # Lights the fire when the user clicks the "light fire" option. def light_fire_clicked game.light_fire end # Saves the game when the user clicks the "save" option. def save_game_clicked game.save end # Resets the game when the user clicks the "reset" option. def reset_game_clicked game.reset end # Loads the game when the user clicks the "load" option. def load_game_clicked game.load end end $text_based_rpg = TextedBasedGamePresenter.new def tick args $text_based_rpg.state = args.state $text_based_rpg.outputs = args.outputs $text_based_rpg.inputs = args.inputs $text_based_rpg.tick endAdvanced Rendering - Simple Render Targets - main.rb
# ./samples/07_advanced_rendering/01_simple_render_targets/app/main.rb def tick args # args.outputs.render_targets are really really powerful. # They essentially allow you to create a sprite programmatically and cache the result. # Create a render_target of a :block and a :gradient on tick zero. if args.state.tick_count == 0 args.render_target(:block).solids << [0, 0, 1280, 100] # The gradient is actually just a collection of black solids with increasing # opacities. args.render_target(:gradient).solids << 90.map_with_index do |x| 50.map_with_index do |y| [x * 15, y * 15, 15, 15, 0, 0, 0, (x * 3).fdiv(255) * 255] end end end # Take the :block render_target and present it horizontally centered. # Use a subsection of the render_targetd specified by source_x, # source_y, source_w, source_h. args.outputs.sprites << { x: 0, y: 310, w: 1280, h: 100, path: :block, source_x: 0, source_y: 0, source_w: 1280, source_h: 100 } # After rendering :block, render gradient on top of :block. args.outputs.sprites << [0, 0, 1280, 720, :gradient] args.outputs.labels << [1270, 710, args.gtk.current_framerate, 0, 2, 255, 255, 255] tick_instructions args, "Sample app shows how to use render_targets (programmatically create cached sprites)." end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label end $gtk.resetAdvanced Rendering - Render Targets With Tile Manipulation - main.rb
# ./samples/07_advanced_rendering/02_render_targets_with_tile_manipulation/app/main.rb # This sample is meant to show you how to do that dripping transition thing # at the start of the original Doom. Most of this file is here to animate # a scene to wipe away; the actual wipe effect is in the last 20 lines or # so. $gtk.reset # reset all game state if reloaded. def circle_of_blocks pass, xoffset, yoffset, angleoffset, blocksize, distance numblocks = 10 for i in 1..numblocks do angle = ((360 / numblocks) * i) + angleoffset radians = angle * (Math::PI / 180) x = (xoffset + (distance * Math.cos(radians))).round y = (yoffset + (distance * Math.sin(radians))).round pass.solids << [ x, y, blocksize, blocksize, 255, 255, 0 ] end end def draw_scene args, pass pass.solids << [0, 360, 1280, 360, 0, 0, 200] pass.solids << [0, 0, 1280, 360, 0, 127, 0] blocksize = 100 angleoffset = args.state.tick_count * 2.5 centerx = (1280 - blocksize) / 2 centery = (720 - blocksize) / 2 circle_of_blocks pass, centerx, centery, angleoffset, blocksize * 2, 500 circle_of_blocks pass, centerx, centery, angleoffset, blocksize, 325 circle_of_blocks pass, centerx, centery, angleoffset, blocksize / 2, 200 circle_of_blocks pass, centerx, centery, angleoffset, blocksize / 4, 100 end def tick args segments = 160 # On the first tick, initialize some stuff. if !args.state.yoffsets args.state.baseyoff = 0 args.state.yoffsets = [] for i in 0..segments do args.state.yoffsets << rand * 100 end end # Just draw some random stuff for a few seconds. args.state.static_debounce ||= 60 * 2.5 if args.state.static_debounce > 0 last_frame = args.state.static_debounce == 1 target = last_frame ? args.render_target(:last_frame) : args.outputs draw_scene args, target args.state.static_debounce -= 1 return unless last_frame end # build up the wipe... # this is the thing we're wiping to. args.outputs.sprites << [ 0, 0, 1280, 720, 'dragonruby.png' ] return if (args.state.baseyoff > (1280 + 100)) # stop when done sliding segmentw = 1280 / segments x = 0 for i in 0..segments do yoffset = 0 if args.state.yoffsets[i] < args.state.baseyoff yoffset = args.state.baseyoff - args.state.yoffsets[i] end # (720 - yoffset) flips the coordinate system, (- 720) adjusts for the height of the segment. args.outputs.sprites << [ x, (720 - yoffset) - 720, segmentw, 720, 'last_frame', 0, 255, 255, 255, 255, x, 0, segmentw, 720 ] x += segmentw end args.state.baseyoff += 4 tick_instructions args, "Sample app shows an advanced usage of render_target." end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label endAdvanced Rendering - Render Target Viewports - main.rb
# ./samples/07_advanced_rendering/03_render_target_viewports/app/main.rb =begin APIs listing that haven't been encountered in previous sample apps: - args.state.new_entity: Used when we want to create a new object, like a sprite or button. For example, if we want to create a new button, we would declare it as a new entity and then define its properties. (Remember, you can use state to define ANY property and it will be retained across frames.) If you have a solar system and you're creating args.state.sun and setting its image path to an image in the sprites folder, you would do the following: (See samples/99_sample_nddnug_workshop for more details.) args.state.sun ||= args.state.new_entity(:sun) do |s| s.path = 'sprites/sun.png' end - String interpolation: Uses #{} syntax; everything between the #{ and the } is evaluated as Ruby code, and the placeholder is replaced with its corresponding value or result. For example, if we have a variable name = "Ruby" then the line puts "How are you, #{name}?" would print "How are you, Ruby?" to the console. (Remember, string interpolation only works with double quotes!) - Ternary operator (?): Similar to if statement; first evalulates whether a statement is true or false, and then executes a command depending on that result. For example, if we had a variable grade = 75 and used the ternary operator in the command pass_or_fail = grade > 65 ? "pass" : "fail" then the value of pass_or_fail would be "pass" since grade's value was greater than 65. Reminders: - args.grid.(left|right|top|bottom): Pixel value for the boundaries of the virtual 720 p screen (Dragon Ruby Game Toolkits's virtual resolution is always 1280x720). - Numeric#shift_(left|right|up|down): Shifts the Numeric in the correct direction by adding or subracting. - ARRAY#inside_rect?: An array with at least two values is considered a point. An array with at least four values is considered a rect. The inside_rect? function returns true or false depending on if the point is inside the rect. - ARRAY#intersect_rect?: Returns true or false depending on if the two rectangles intersect. - args.inputs.mouse.click: This property will be set if the mouse was clicked. For more information about the mouse, go to mygame/documentation/07-mouse.md. - args.inputs.keyboard.key_up.KEY: The value of the properties will be set to the frame that the key_up event occurred (the frame correlates to args.state.tick_count). For more information about the keyboard, go to mygame/documentation/06-keyboard.md. - args.state.labels: The parameters for a label are 1. the position (x, y) 2. the text 3. the size 4. the alignment 5. the color (red, green, and blue saturations) 6. the alpha (or transparency) For more information about labels, go to mygame/documentation/02-labels.md. - args.state.lines: The parameters for a line are 1. the starting position (x, y) 2. the ending position (x2, y2) 3. the color (red, green, and blue saturations) 4. the alpha (or transparency) For more information about lines, go to mygame/documentation/04-lines.md. - args.state.solids (and args.state.borders): The parameters for a solid (or border) are 1. the position (x, y) 2. the width (w) 3. the height (h) 4. the color (r, g, b) 5. the alpha (or transparency) For more information about solids and borders, go to mygame/documentation/03-solids-and-borders.md. - args.state.sprites: The parameters for a sprite are 1. the position (x, y) 2. the width (w) 3. the height (h) 4. the image path 5. the angle 6. the alpha (or transparency) For more information about sprites, go to mygame/documentation/05-sprites.md. =end # This sample app shows different objects that can be used when making games, such as labels, # lines, sprites, solids, buttons, etc. Each demo section shows how these objects can be used. # Also note that state.tick_count refers to the passage of time, or current frame. class TechDemo attr_accessor :inputs, :state, :outputs, :grid, :args # Calls all methods necessary for the app to run properly. def tick labels_tech_demo lines_tech_demo solids_tech_demo borders_tech_demo sprites_tech_demo keyboards_tech_demo controller_tech_demo mouse_tech_demo point_to_rect_tech_demo rect_to_rect_tech_demo button_tech_demo export_game_state_demo window_state_demo render_seperators end # Shows output of different kinds of labels on the screen def labels_tech_demo outputs.labels << [grid.left.shift_right(5), grid.top.shift_down(5), "This is a label located at the top left."] outputs.labels << [grid.left.shift_right(5), grid.bottom.shift_up(30), "This is a label located at the bottom left."] outputs.labels << [ 5, 690, "Labels (x, y, text, size, align, r, g, b, a)"] outputs.labels << [ 5, 660, "Smaller label.", -2] outputs.labels << [ 5, 630, "Small label.", -1] outputs.labels << [ 5, 600, "Medium label.", 0] outputs.labels << [ 5, 570, "Large label.", 1] outputs.labels << [ 5, 540, "Larger label.", 2] outputs.labels << [300, 660, "Left aligned.", 0, 2] outputs.labels << [300, 640, "Center aligned.", 0, 1] outputs.labels << [300, 620, "Right aligned.", 0, 0] outputs.labels << [175, 595, "Red Label.", 0, 0, 255, 0, 0] outputs.labels << [175, 575, "Green Label.", 0, 0, 0, 255, 0] outputs.labels << [175, 555, "Blue Label.", 0, 0, 0, 0, 255] outputs.labels << [175, 535, "Faded Label.", 0, 0, 0, 0, 0, 128] end # Shows output of lines on the screen def lines_tech_demo outputs.labels << [5, 500, "Lines (x, y, x2, y2, r, g, b, a)"] outputs.lines << [5, 450, 100, 450] outputs.lines << [5, 430, 300, 430] outputs.lines << [5, 410, 300, 410, state.tick_count % 255, 0, 0, 255] # red saturation changes outputs.lines << [5, 390 - state.tick_count % 25, 300, 390, 0, 0, 0, 255] # y position changes outputs.lines << [5 + state.tick_count % 200, 360, 300, 360, 0, 0, 0, 255] # x position changes end # Shows output of different kinds of solids on the screen def solids_tech_demo outputs.labels << [ 5, 350, "Solids (x, y, w, h, r, g, b, a)"] outputs.solids << [ 10, 270, 50, 50] outputs.solids << [ 70, 270, 50, 50, 0, 0, 0] outputs.solids << [130, 270, 50, 50, 255, 0, 0] outputs.solids << [190, 270, 50, 50, 255, 0, 0, 128] outputs.solids << [250, 270, 50, 50, 0, 0, 0, 128 + state.tick_count % 128] # transparency changes end # Shows output of different kinds of borders on the screen # The parameters for a border are the same as the parameters for a solid def borders_tech_demo outputs.labels << [ 5, 260, "Borders (x, y, w, h, r, g, b, a)"] outputs.borders << [ 10, 180, 50, 50] outputs.borders << [ 70, 180, 50, 50, 0, 0, 0] outputs.borders << [130, 180, 50, 50, 255, 0, 0] outputs.borders << [190, 180, 50, 50, 255, 0, 0, 128] outputs.borders << [250, 180, 50, 50, 0, 0, 0, 128 + state.tick_count % 128] # transparency changes end # Shows output of different kinds of sprites on the screen def sprites_tech_demo outputs.labels << [ 5, 170, "Sprites (x, y, w, h, path, angle, a)"] outputs.sprites << [ 10, 40, 128, 101, 'dragonruby.png'] outputs.sprites << [ 150, 40, 128, 101, 'dragonruby.png', state.tick_count % 360] # angle changes outputs.sprites << [ 300, 40, 128, 101, 'dragonruby.png', 0, state.tick_count % 255] # transparency changes end # Holds size, alignment, color (black), and alpha (transparency) parameters # Using small_font as a parameter accounts for all remaining parameters # so they don't have to be repeatedly typed def small_font [-2, 0, 0, 0, 0, 255] end # Sets position of each row # Converts given row value to pixels that DragonRuby understands def row_to_px row_number # Row 0 starts 5 units below the top of the grid. # Each row afterward is 20 units lower. grid.top.shift_down(5).shift_down(20 * row_number) end # Uses labels to output current game time (passage of time), and whether or not "h" was pressed # If "h" is pressed, the frame is output when the key_up event occurred def keyboards_tech_demo outputs.labels << [460, row_to_px(0), "Current game time: #{state.tick_count}", small_font] outputs.labels << [460, row_to_px(2), "Keyboard input: inputs.keyboard.key_up.h", small_font] outputs.labels << [460, row_to_px(3), "Press \"h\" on the keyboard.", small_font] if inputs.keyboard.key_up.h # if "h" key_up event occurs state.h_pressed_at = state.tick_count # frame it occurred is stored end # h_pressed_at is initially set to false, and changes once the user presses the "h" key. state.h_pressed_at ||= false if state.h_pressed_at # if h is pressed (pressed_at has a frame number and is no longer false) outputs.labels << [460, row_to_px(4), "\"h\" was pressed at time: #{state.h_pressed_at}", small_font] else # otherwise, label says "h" was never pressed outputs.labels << [460, row_to_px(4), "\"h\" has never been pressed.", small_font] end # border around keyboard input demo section outputs.borders << [455, row_to_px(5), 360, row_to_px(2).shift_up(5) - row_to_px(5)] end # Sets definition for a small label # Makes it easier to position labels in respect to the position of other labels def small_label x, row, message [x, row_to_px(row), message, small_font] end # Uses small labels to show whether the "a" button on the controller is down, held, or up. # y value of each small label is set by calling the row_to_px method def controller_tech_demo x = 460 outputs.labels << small_label(x, 6, "Controller one input: inputs.controller_one") outputs.labels << small_label(x, 7, "Current state of the \"a\" button.") outputs.labels << small_label(x, 8, "Check console window for more info.") if inputs.controller_one.key_down.a # if "a" is in "down" state outputs.labels << small_label(x, 9, "\"a\" button down: #{inputs.controller_one.key_down.a}") puts "\"a\" button down at #{inputs.controller_one.key_down.a}" # prints frame the event occurred elsif inputs.controller_one.key_held.a # if "a" is held down outputs.labels << small_label(x, 9, "\"a\" button held: #{inputs.controller_one.key_held.a}") elsif inputs.controller_one.key_up.a # if "a" is in up state outputs.labels << small_label(x, 9, "\"a\" button up: #{inputs.controller_one.key_up.a}") puts "\"a\" key up at #{inputs.controller_one.key_up.a}" else # if no event has occurred outputs.labels << small_label(x, 9, "\"a\" button state is nil.") end # border around controller input demo section outputs.borders << [455, row_to_px(10), 360, row_to_px(6).shift_up(5) - row_to_px(10)] end # Outputs when the mouse was clicked, as well as the coordinates on the screen # of where the click occurred def mouse_tech_demo x = 460 outputs.labels << small_label(x, 11, "Mouse input: inputs.mouse") if inputs.mouse.click # if click has a value and is not nil state.last_mouse_click = inputs.mouse.click # coordinates of click are stored end if state.last_mouse_click # if mouse is clicked (has coordinates as value) # outputs the time (frame) the click occurred, as well as how many frames have passed since the event outputs.labels << small_label(x, 12, "Mouse click happened at: #{state.last_mouse_click.created_at}, #{state.last_mouse_click.created_at_elapsed}") # outputs coordinates of click outputs.labels << small_label(x, 13, "Mouse click location: #{state.last_mouse_click.point.x}, #{state.last_mouse_click.point.y}") else # otherwise if the mouse has not been clicked outputs.labels << small_label(x, 12, "Mouse click has not occurred yet.") outputs.labels << small_label(x, 13, "Please click mouse.") end end # Outputs whether a mouse click occurred inside or outside of a box def point_to_rect_tech_demo x = 460 outputs.labels << small_label(x, 15, "Click inside the blue box maybe ---->") box = [765, 370, 50, 50, 0, 0, 170] # blue box outputs.borders << box if state.last_mouse_click # if the mouse was clicked if state.last_mouse_click.point.inside_rect? box # if mouse clicked inside box outputs.labels << small_label(x, 16, "Mouse click happened inside the box.") else # otherwise, if mouse was clicked outside the box outputs.labels << small_label(x, 16, "Mouse click happened outside the box.") end else # otherwise, if was not clicked at all outputs.labels << small_label(x, 16, "Mouse click has not occurred yet.") # output if the mouse was not clicked end # border around mouse input demo section outputs.borders << [455, row_to_px(14), 360, row_to_px(11).shift_up(5) - row_to_px(14)] end # Outputs a red box onto the screen. A mouse click from the user inside of the red box will output # a smaller box. If two small boxes are inside of the red box, it will be determined whether or not # they intersect. def rect_to_rect_tech_demo x = 460 outputs.labels << small_label(x, 17.5, "Click inside the red box below.") # label with instructions red_box = [460, 250, 355, 90, 170, 0, 0] # definition of the red box outputs.borders << red_box # output as a border (not filled in) # If the mouse is clicked inside the red box, two collision boxes are created. if inputs.mouse.click if inputs.mouse.click.point.inside_rect? red_box if !state.box_collision_one # if the collision_one box does not yet have a definition # Subtracts 25 from the x and y positions of the click point in order to make the click point the center of the box. # You can try deleting the subtraction to see how it impacts the box placement. state.box_collision_one = [inputs.mouse.click.point.x - 25, inputs.mouse.click.point.y - 25, 50, 50, 180, 0, 0, 180] # sets definition elsif !state.box_collision_two # if collision_two does not yet have a definition state.box_collision_two = [inputs.mouse.click.point.x - 25, inputs.mouse.click.point.y - 25, 50, 50, 0, 0, 180, 180] # sets definition else state.box_collision_one = nil # both boxes are empty state.box_collision_two = nil end end end # If collision boxes exist, they are output onto screen inside the red box as solids if state.box_collision_one outputs.solids << state.box_collision_one end if state.box_collision_two outputs.solids << state.box_collision_two end # Outputs whether or not the two collision boxes intersect. if state.box_collision_one && state.box_collision_two # if both collision_boxes are defined (and not nil or empty) if state.box_collision_one.intersect_rect? state.box_collision_two # if the two boxes intersect outputs.labels << small_label(x, 23.5, 'The boxes intersect.') else # otherwise, if the two boxes do not intersect outputs.labels << small_label(x, 23.5, 'The boxes do not intersect.') end else outputs.labels << small_label(x, 23.5, '--') # if the two boxes are not defined (are nil or empty), this label is output end end # Creates a button and outputs it onto the screen using labels and borders. # If the button is clicked, the color changes to make it look faded. def button_tech_demo x, y, w, h = 460, 160, 300, 50 state.button ||= state.new_entity(:button_with_fade) # Adds w.half to x and h.half + 10 to y in order to display the text inside the button's borders. state.button.label ||= [x + w.half, y + h.half + 10, "click me and watch me fade", 0, 1] state.button.border ||= [x, y, w, h] if inputs.mouse.click && inputs.mouse.click.point.inside_rect?(state.button.border) # if mouse is clicked, and clicked inside button's border state.button.clicked_at = inputs.mouse.click.created_at # stores the time the click occurred end outputs.labels << state.button.label outputs.borders << state.button.border if state.button.clicked_at # if button was clicked (variable has a value and is not nil) # The appearance of the button changes for 0.25 seconds after the time the button is clicked at. # The color changes (rgb is set to 0, 180, 80) and the transparency gradually changes. # Change 0.25 to 1.25 and notice that the transparency takes longer to return to normal. outputs.solids << [x, y, w, h, 0, 180, 80, 255 * state.button.clicked_at.ease(0.25.seconds, :flip)] end end # Creates a new button by declaring it as a new entity, and sets values. def new_button_prefab x, y, message w, h = 300, 50 button = state.new_entity(:button_with_fade) button.label = [x + w.half, y + h.half + 10, message, 0, 1] # '+ 10' keeps label's text within button's borders button.border = [x, y, w, h] # sets border definition button end # If the mouse has been clicked and the click's location is inside of the button's border, that means # that the button has been clicked. This method returns a boolean value. def button_clicked? button inputs.mouse.click && inputs.mouse.click.point.inside_rect?(button.border) end # Determines if button was clicked, and changes its appearance if it is clicked def tick_button_prefab button outputs.labels << button.label # outputs button's label and border outputs.borders << button.border if button_clicked? button # if button is clicked button.clicked_at = inputs.mouse.click.created_at # stores the time that the button was clicked end if button.clicked_at # if clicked_at has a frame value and is not nil # button is output; color changes and transparency changes for 0.25 seconds after click occurs outputs.solids << [button.border.x, button.border.y, button.border.w, button.border.h, 0, 180, 80, 255 * button.clicked_at.ease(0.25.seconds, :flip)] # transparency changes for 0.25 seconds end end # Exports the app's game state if the export button is clicked. def export_game_state_demo state.export_game_state_button ||= new_button_prefab(460, 100, "click to export app state") tick_button_prefab(state.export_game_state_button) # calls method to output button if button_clicked? state.export_game_state_button # if the export button is clicked args.gtk.export! "Exported from clicking the export button in the tech demo." # the export occurs end end # The mouse and keyboard focus are set to "yes" when the Dragonruby window is the active window. def window_state_demo m = $gtk.args.inputs.mouse.has_focus ? 'Y' : 'N' # ternary operator (similar to if statement) k = $gtk.args.inputs.keyboard.has_focus ? 'Y' : 'N' outputs.labels << [460, 20, "mouse focus: #{m} keyboard focus: #{k}", small_font] end #Sets values for the horizontal separator (divides demo sections) def horizontal_seperator y, x, x2 [x, y, x2, y, 150, 150, 150] end #Sets the values for the vertical separator (divides demo sections) def vertical_seperator x, y, y2 [x, y, x, y2, 150, 150, 150] end # Outputs vertical and horizontal separators onto the screen to separate each demo section. def render_seperators outputs.lines << horizontal_seperator(505, grid.left, 445) outputs.lines << horizontal_seperator(353, grid.left, 445) outputs.lines << horizontal_seperator(264, grid.left, 445) outputs.lines << horizontal_seperator(174, grid.left, 445) outputs.lines << vertical_seperator(445, grid.top, grid.bottom) outputs.lines << horizontal_seperator(690, 445, 820) outputs.lines << horizontal_seperator(426, 445, 820) outputs.lines << vertical_seperator(820, grid.top, grid.bottom) end end $tech_demo = TechDemo.new def tick args $tech_demo.inputs = args.inputs $tech_demo.state = args.state $tech_demo.grid = args.grid $tech_demo.args = args $tech_demo.outputs = args.render_target(:mini_map) $tech_demo.tick args.outputs.labels << [830, 715, "Render target:", [-2, 0, 0, 0, 0, 255]] args.outputs.sprites << [0, 0, 1280, 720, :mini_map] args.outputs.sprites << [830, 300, 675, 379, :mini_map] tick_instructions args, "Sample app shows all the rendering apis available." end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label endAdvanced Rendering - Render Primitive Hierarchies - main.rb
# ./samples/07_advanced_rendering/04_render_primitive_hierarchies/app/main.rb =begin APIs listing that haven't been encountered in previous sample apps: - Nested array: An array whose individual elements are also arrays; useful for storing groups of similar data. Also called multidimensional arrays. In this sample app, we see nested arrays being used in object definitions. Notice the parameters for solids, listed below. Parameters 1-3 set the definition for the rect, and parameter 4 sets the definition of the color. Instead of having a solid definition that looks like this, [X, Y, W, H, R, G, B] we can separate it into two separate array definitions in one, like this [[X, Y, W, H], [R, G, B]] and both options work fine in defining our solid (or any object). - Collections: Lists of data; useful for organizing large amounts of data. One element of a collection could be an array (which itself contains many elements). For example, a collection that stores two solid objects would look like this: [ [100, 100, 50, 50, 0, 0, 0], [100, 150, 50, 50, 255, 255, 255] ] If this collection was added to args.outputs.solids, two solids would be output next to each other, one black and one white. Nested arrays can be used in collections, as you will see in this sample app. Reminders: - args.outputs.solids: An array. The values generate a solid. The parameters for a solid are 1. The position on the screen (x, y) 2. The width (w) 3. The height (h) 4. The color (r, g, b) (if a color is not assigned, the object's default color will be black) NOTE: THE PARAMETERS ARE THE SAME FOR BORDERS! Here is an example of a (red) border or solid definition: [100, 100, 400, 500, 255, 0, 0] It will be a solid or border depending on if it is added to args.outputs.solids or args.outputs.borders. For more information about solids and borders, go to mygame/documentation/03-solids-and-borders.md. - args.outputs.sprites: An array. The values generate a sprite. The parameters for sprites are 1. The position on the screen (x, y) 2. The width (w) 3. The height (h) 4. The image path (p) Here is an example of a sprite definition: [100, 100, 400, 500, 'sprites/dragonruby.png'] For more information about sprites, go to mygame/documentation/05-sprites.md. =end # This code demonstrates the creation and output of objects like sprites, borders, and solids # If filled in, they are solids # If hollow, they are borders # If images, they are sprites # Solids are added to args.outputs.solids # Borders are added to args.outputs.borders # Sprites are added to args.outputs.sprites # The tick method runs 60 frames every second. # Your game is going to happen under this one function. def tick args border_as_solid_and_solid_as_border args sprite_as_border_or_solids args collection_of_borders_and_solids args collection_of_sprites args end # Shows a border being output onto the screen as a border and a solid # Also shows how colors can be set def border_as_solid_and_solid_as_border args border = [0, 0, 50, 50] args.outputs.borders << border args.outputs.solids << border # Red, green, blue saturations (last three parameters) can be any number between 0 and 255 border_with_color = [0, 100, 50, 50, 255, 0, 0] args.outputs.borders << border_with_color args.outputs.solids << border_with_color border_with_nested_color = [0, 200, 50, 50, [0, 255, 0]] # nested color args.outputs.borders << border_with_nested_color args.outputs.solids << border_with_nested_color border_with_nested_rect = [[0, 300, 50, 50], 0, 0, 255] # nested rect args.outputs.borders << border_with_nested_rect args.outputs.solids << border_with_nested_rect border_with_nested_color_and_rect = [[0, 400, 50, 50], [255, 0, 255]] # nested rect and color args.outputs.borders << border_with_nested_color_and_rect args.outputs.solids << border_with_nested_color_and_rect end # Shows a sprite output onto the screen as a sprite, border, and solid # Demonstrates that all three outputs appear differently on screen def sprite_as_border_or_solids args sprite = [100, 0, 50, 50, 'sprites/ship.png'] args.outputs.sprites << sprite # Sprite_as_border variable has same parameters (excluding position) as above object, # but will appear differently on screen because it is added to args.outputs.borders sprite_as_border = [100, 100, 50, 50, 'sprites/ship.png'] args.outputs.borders << sprite_as_border # Sprite_as_solid variable has same parameters (excluding position) as above object, # but will appear differently on screen because it is added to args.outputs.solids sprite_as_solid = [100, 200, 50, 50, 'sprites/ship.png'] args.outputs.solids << sprite_as_solid end # Holds and outputs a collection of borders and a collection of solids # Collections are created by using arrays to hold parameters of each individual object def collection_of_borders_and_solids args collection_borders = [ [ [200, 0, 50, 50], # black border [200, 100, 50, 50, 255, 0, 0], # red border [200, 200, 50, 50, [0, 255, 0]], # nested color ], [[200, 300, 50, 50], 0, 0, 255], # nested rect [[200, 400, 50, 50], [255, 0, 255]] # nested rect and nested color ] args.outputs.borders << collection_borders collection_solids = [ [ [[300, 300, 50, 50], 0, 0, 255], # nested rect [[300, 400, 50, 50], [255, 0, 255]] # nested rect and nested color ], [300, 0, 50, 50], [300, 100, 50, 50, 255, 0, 0], [300, 200, 50, 50, [0, 255, 0]], # nested color ] args.outputs.solids << collection_solids end # Holds and outputs a collection of sprites by adding it to args.outputs.sprites # Also outputs a collection with same parameters (excluding position) by adding # it to args.outputs.solids and another to args.outputs.borders def collection_of_sprites args sprites_collection = [ [ [400, 0, 50, 50, 'sprites/ship.png'], [400, 100, 50, 50, 'sprites/ship.png'], ], [400, 200, 50, 50, 'sprites/ship.png'] ] args.outputs.sprites << sprites_collection args.outputs.solids << [ [500, 0, 50, 50, 'sprites/ship.png'], [500, 100, 50, 50, 'sprites/ship.png'], [[[500, 200, 50, 50, 'sprites/ship.png']]] ] args.outputs.borders << [ [ [600, 0, 50, 50, 'sprites/ship.png'], [600, 100, 50, 50, 'sprites/ship.png'], ], [600, 200, 50, 50, 'sprites/ship.png'] ] endAdvanced Rendering - Render Primitives As Hash - main.rb
# ./samples/07_advanced_rendering/05_render_primitives_as_hash/app/main.rb =begin Reminders: - Hashes: Collection of unique keys and their corresponding values. The value can be found using their keys. For example, if we have a "numbers" hash that stores numbers in English as the key and numbers in Spanish as the value, we'd have a hash that looks like this... numbers = { "one" => "uno", "two" => "dos", "three" => "tres" } and on it goes. Now if we wanted to find the corresponding value of the "one" key, we could say puts numbers["one"] which would print "uno" to the console. - args.outputs.sprites: An array. The values generate a sprite. The parameters are [X, Y, WIDTH, HEIGHT, PATH, ANGLE, ALPHA, RED, GREEN, BLUE] For more information about sprites, go to mygame/documentation/05-sprites.md. - args.outputs.labels: An array. The values generate a label. The parameters are [X, Y, TEXT, SIZE, ALIGNMENT, RED, GREEN, BLUE, ALPHA, FONT STYLE] For more information about labels, go to mygame/documentation/02-labels.md. - args.outputs.solids: An array. The values generate a solid. The parameters are [X, Y, WIDTH, HEIGHT, RED, GREEN, BLUE, ALPHA] For more information about solids, go to mygame/documentation/03-solids-and-borders.md. - args.outputs.borders: An array. The values generate a border. The parameters are the same as a solid. For more information about borders, go to mygame/documentation/03-solids-and-borders.md. - args.outputs.lines: An array. The values generate a line. The parameters are [X1, Y1, X2, Y2, RED, GREEN, BLUE] For more information about labels, go to mygame/documentation/02-labels.md. =end # This sample app demonstrates how hashes can be used to output different kinds of objects. def tick args args.state.angle ||= 0 # initializes angle to 0 args.state.angle += 1 # increments angle by 1 every frame (60 times a second) # Outputs sprite using a hash args.outputs.sprites << { x: 30, # sprite position y: 550, w: 128, # sprite size h: 101, path: "dragonruby.png", # image path angle: args.state.angle, # angle a: 255, # alpha (transparency) r: 255, # color saturation g: 255, b: 255, tile_x: 0, # sprite sub division/tile tile_y: 0, tile_w: -1, tile_h: -1, flip_vertically: false, # don't flip sprite flip_horizontally: false, angle_anchor_x: 0.5, # rotation center set to middle angle_anchor_y: 0.5 } # Outputs label using a hash args.outputs.labels << { x: 200, # label position y: 550, text: "dragonruby", # label text size_enum: 2, alignment_enum: 1, r: 155, # color saturation g: 50, b: 50, a: 255, # transparency font: "fonts/manaspc.ttf" # font style; without mentioned file, label won't output correctly } # Outputs solid using a hash # [X, Y, WIDTH, HEIGHT, RED, GREEN, BLUE, ALPHA] args.outputs.solids << { x: 400, # position y: 550, w: 160, # size h: 90, r: 120, # color saturation g: 50, b: 50, a: 255 # transparency } # Outputs border using a hash # Same parameters as a solid args.outputs.borders << { x: 600, y: 550, w: 160, h: 90, r: 120, g: 50, b: 50, a: 255 } # Outputs line using a hash args.outputs.lines << { x: 900, # starting position y: 550, x2: 1200, # ending position y2: 550, r: 120, # color saturation g: 50, b: 50, a: 255 # transparency } # Outputs sprite as a primitive using a hash args.outputs.primitives << { x: 30, # position y: 200, w: 128, # size h: 101, path: "dragonruby.png", # image path angle: args.state.angle, # angle a: 255, # transparency r: 255, # color saturation g: 255, b: 255, tile_x: 0, # sprite sub division/tile tile_y: 0, tile_w: -1, tile_h: -1, flip_vertically: false, # don't flip flip_horizontally: false, angle_anchor_x: 0.5, # rotation center set to middle angle_anchor_y: 0.5 }.sprite # Outputs label as primitive using a hash args.outputs.primitives << { x: 200, # position y: 200, text: "dragonruby", # text size: 2, alignment: 1, r: 155, # color saturation g: 50, b: 50, a: 255, # transparency font: "fonts/manaspc.ttf" # font style }.label # Outputs solid as primitive using a hash args.outputs.primitives << { x: 400, # position y: 200, w: 160, # size h: 90, r: 120, # color saturation g: 50, b: 50, a: 255 # transparency }.solid # Outputs border as primitive using a hash # Same parameters as solid args.outputs.primitives << { x: 600, # position y: 200, w: 160, # size h: 90, r: 120, # color saturation g: 50, b: 50, a: 255 # transparency }.border # Outputs line as primitive using a hash args.outputs.primitives << { x: 900, # starting position y: 200, x2: 1200, # ending position y2: 200, r: 120, # color saturation g: 50, b: 50, a: 255 # transparency }.line endAdvanced Rendering - Pixel Arrays - main.rb
# ./samples/07_advanced_rendering/06_pixel_arrays/app/main.rb $gtk.reset def tick args args.state.posinc ||= 1 args.state.pos ||= 0 args.state.rotation ||= 0 dimension = 10 # keep it small and let the GPU scale it when rendering the sprite. # Set up our "scanner" pixel array and fill it with black pixels. args.pixel_array(:scanner).width = dimension args.pixel_array(:scanner).height = dimension args.pixel_array(:scanner).pixels.fill(0xFF000000, 0, dimension * dimension) # black, full alpha # Draw a green line that bounces up and down the sprite. args.pixel_array(:scanner).pixels.fill(0xFF00FF00, dimension * args.state.pos, dimension) # green, full alpha # Adjust position for next frame. args.state.pos += args.state.posinc if args.state.posinc > 0 && args.state.pos >= dimension args.state.posinc = -1 args.state.pos = dimension - 1 elsif args.state.posinc < 0 && args.state.pos < 0 args.state.posinc = 1 args.state.pos = 1 end # New/changed pixel arrays get uploaded to the GPU before we render # anything. At that point, they can be scaled, rotated, and otherwise # used like any other sprite. w = 100 h = 100 x = (1280 - w) / 2 y = (720 - h) / 2 args.outputs.background_color = [64, 0, 128] args.outputs.primitives << [x, y, w, h, :scanner, args.state.rotation].sprite args.state.rotation += 1 args.outputs.primitives << args.gtk.current_framerate_primitives endAdvanced Rendering - Splitscreen Camera - main.rb
# ./samples/07_advanced_rendering/07_splitscreen_camera/app/main.rb class CameraMovement attr_accessor :state, :inputs, :outputs, :grid #============================================================================================== #Serialize def serialize {state: state, inputs: inputs, outputs: outputs, grid: grid } end def inspect serialize.to_s end def to_s serialize.to_s end #============================================================================================== #Tick def tick defaults calc render input end #============================================================================================== #Default functions def defaults outputs[:scene].background_color = [0,0,0] state.trauma ||= 0.0 state.trauma_power ||= 2 state.player_cyan ||= new_player_cyan state.player_magenta ||= new_player_magenta state.camera_magenta ||= new_camera_magenta state.camera_cyan ||= new_camera_cyan state.camera_center ||= new_camera_center state.room ||= new_room end def default_player x, y, w, h, sprite_path state.new_entity(:player, { x: x, y: y, dy: 0, dx: 0, w: w, h: h, damage: 0, dead: false, orientation: "down", max_alpha: 255, sprite_path: sprite_path}) end def default_floor_tile x, y, w, h, sprite_path state.new_entity(:room, { x: x, y: y, w: w, h: h, sprite_path: sprite_path}) end def default_camera x, y, w, h state.new_entity(:camera, { x: x, y: y, dx: 0, dy: 0, w: w, h: h}) end def new_player_cyan default_player(0, 0, 64, 64, "sprites/player/player_#{state.player_cyan.orientation}_standing.png") end def new_player_magenta default_player(64, 0, 64, 64, "sprites/player/player_#{state.player_magenta.orientation}_standing.png") end def new_camera_magenta default_camera(0,0,720,720) end def new_camera_cyan default_camera(0,0,720,720) end def new_camera_center default_camera(0,0,1280,720) end def new_room default_floor_tile(0,0,1024,1024,'sprites/rooms/camera_room.png') end #============================================================================================== #Calculation functions def calc calc_camera_magenta calc_camera_cyan calc_camera_center calc_player_cyan calc_player_magenta calc_trauma_decay end def center_camera_tolerance return Math.sqrt(((state.player_magenta.x - state.player_cyan.x) ** 2) + ((state.player_magenta.y - state.player_cyan.y) ** 2)) > 640 end def calc_player_cyan state.player_cyan.x += state.player_cyan.dx state.player_cyan.y += state.player_cyan.dy end def calc_player_magenta state.player_magenta.x += state.player_magenta.dx state.player_magenta.y += state.player_magenta.dy end def calc_camera_center timeScale = 1 midX = (state.player_magenta.x + state.player_cyan.x)/2 midY = (state.player_magenta.y + state.player_cyan.y)/2 targetX = midX - state.camera_center.w/2 targetY = midY - state.camera_center.h/2 state.camera_center.x += (targetX - state.camera_center.x) * 0.1 * timeScale state.camera_center.y += (targetY - state.camera_center.y) * 0.1 * timeScale end def calc_camera_magenta timeScale = 1 targetX = state.player_magenta.x + state.player_magenta.w - state.camera_magenta.w/2 targetY = state.player_magenta.y + state.player_magenta.h - state.camera_magenta.h/2 state.camera_magenta.x += (targetX - state.camera_magenta.x) * 0.1 * timeScale state.camera_magenta.y += (targetY - state.camera_magenta.y) * 0.1 * timeScale end def calc_camera_cyan timeScale = 1 targetX = state.player_cyan.x + state.player_cyan.w - state.camera_cyan.w/2 targetY = state.player_cyan.y + state.player_cyan.h - state.camera_cyan.h/2 state.camera_cyan.x += (targetX - state.camera_cyan.x) * 0.1 * timeScale state.camera_cyan.y += (targetY - state.camera_cyan.y) * 0.1 * timeScale end def calc_player_quadrant angle if angle < 45 and angle > -45 and state.player_cyan.x < state.player_magenta.x return 1 elsif angle < 45 and angle > -45 and state.player_cyan.x > state.player_magenta.x return 3 elsif (angle > 45 or angle < -45) and state.player_cyan.y < state.player_magenta.y return 2 elsif (angle > 45 or angle < -45) and state.player_cyan.y > state.player_magenta.y return 4 end end def calc_camera_shake state.trauma end def calc_trauma_decay state.trauma = state.trauma * 0.9 end def calc_random_float_range(min, max) rand * (max-min) + min end #============================================================================================== #Render Functions def render render_floor render_player_cyan render_player_magenta if center_camera_tolerance render_split_camera_scene else render_camera_center_scene end end def render_player_cyan outputs[:scene].sprites << {x: state.player_cyan.x, y: state.player_cyan.y, w: state.player_cyan.w, h: state.player_cyan.h, path: "sprites/player/player_#{state.player_cyan.orientation}_standing.png", r: 0, g: 255, b: 255} end def render_player_magenta outputs[:scene].sprites << {x: state.player_magenta.x, y: state.player_magenta.y, w: state.player_magenta.w, h: state.player_magenta.h, path: "sprites/player/player_#{state.player_magenta.orientation}_standing.png", r: 255, g: 0, b: 255} end def render_floor outputs[:scene].sprites << [state.room.x, state.room.y, state.room.w, state.room.h, state.room.sprite_path] end def render_camera_center_scene zoomFactor = 1 outputs[:scene].width = state.room.w outputs[:scene].height = state.room.h maxAngle = 10.0 maxOffset = 20.0 angle = maxAngle * calc_camera_shake * calc_random_float_range(-1,1) offsetX = 32 - (maxOffset * calc_camera_shake * calc_random_float_range(-1,1)) offsetY = 32 - (maxOffset * calc_camera_shake * calc_random_float_range(-1,1)) outputs.sprites << {x: (-state.camera_center.x - offsetX)/zoomFactor, y: (-state.camera_center.y - offsetY)/zoomFactor, w: outputs[:scene].width/zoomFactor, h: outputs[:scene].height/zoomFactor, path: :scene, angle: angle, source_w: -1, source_h: -1} outputs.labels << [128,64,"#{state.trauma.round(1)}",8,2,255,0,255,255] end def render_split_camera_scene outputs[:scene].width = state.room.w outputs[:scene].height = state.room.h render_camera_magenta_scene render_camera_cyan_scene angle = Math.atan((state.player_magenta.y - state.player_cyan.y)/(state.player_magenta.x- state.player_cyan.x)) * 180/Math::PI output_split_camera angle end def render_camera_magenta_scene zoomFactor = 1 offsetX = 32 offsetY = 32 outputs[:scene_magenta].sprites << {x: (-state.camera_magenta.x*2), y: (-state.camera_magenta.y), w: outputs[:scene].width*2, h: outputs[:scene].height, path: :scene} end def render_camera_cyan_scene zoomFactor = 1 offsetX = 32 offsetY = 32 outputs[:scene_cyan].sprites << {x: (-state.camera_cyan.x*2), y: (-state.camera_cyan.y), w: outputs[:scene].width*2, h: outputs[:scene].height, path: :scene} end def output_split_camera angle #TODO: Clean this up! quadrant = calc_player_quadrant angle outputs.labels << [128,64,"#{quadrant}",8,2,255,0,255,255] if quadrant == 1 set_camera_attributes(w: 640, h: 720, m_x: 640, m_y: 0, c_x: 0, c_y: 0) elsif quadrant == 2 set_camera_attributes(w: 1280, h: 360, m_x: 0, m_y: 360, c_x: 0, c_y: 0) elsif quadrant == 3 set_camera_attributes(w: 640, h: 720, m_x: 0, m_y: 0, c_x: 640, c_y: 0) elsif quadrant == 4 set_camera_attributes(w: 1280, h: 360, m_x: 0, m_y: 0, c_x: 0, c_y: 360) end end def set_camera_attributes(w: 0, h: 0, m_x: 0, m_y: 0, c_x: 0, c_y: 0) state.camera_cyan.w = w + 64 state.camera_cyan.h = h + 64 outputs[:scene_cyan].width = (w) * 2 outputs[:scene_cyan].height = h state.camera_magenta.w = w + 64 state.camera_magenta.h = h + 64 outputs[:scene_magenta].width = (w) * 2 outputs[:scene_magenta].height = h outputs.sprites << {x: m_x, y: m_y, w: w, h: h, path: :scene_magenta} outputs.sprites << {x: c_x, y: c_y, w: w, h: h, path: :scene_cyan} end def add_trauma amount state.trauma = [state.trauma + amount, 1.0].min end def remove_trauma amount state.trauma = [state.trauma - amount, 0.0].max end #============================================================================================== #Input functions def input input_move_cyan input_move_magenta if inputs.keyboard.key_down.t add_trauma(0.5) elsif inputs.keyboard.key_down.y remove_trauma(0.1) end end def input_move_cyan if inputs.keyboard.key_held.up state.player_cyan.dy = 5 state.player_cyan.orientation = "up" elsif inputs.keyboard.key_held.down state.player_cyan.dy = -5 state.player_cyan.orientation = "down" else state.player_cyan.dy *= 0.8 end if inputs.keyboard.key_held.left state.player_cyan.dx = -5 state.player_cyan.orientation = "left" elsif inputs.keyboard.key_held.right state.player_cyan.dx = 5 state.player_cyan.orientation = "right" else state.player_cyan.dx *= 0.8 end outputs.labels << [128,512,"#{state.player_cyan.x.round()}",8,2,0,255,255,255] outputs.labels << [128,480,"#{state.player_cyan.y.round()}",8,2,0,255,255,255] end def input_move_magenta if inputs.keyboard.key_held.w state.player_magenta.dy = 5 state.player_magenta.orientation = "up" elsif inputs.keyboard.key_held.s state.player_magenta.dy = -5 state.player_magenta.orientation = "down" else state.player_magenta.dy *= 0.8 end if inputs.keyboard.key_held.a state.player_magenta.dx = -5 state.player_magenta.orientation = "left" elsif inputs.keyboard.key_held.d state.player_magenta.dx = 5 state.player_magenta.orientation = "right" else state.player_magenta.dx *= 0.8 end outputs.labels << [128,360,"#{state.player_magenta.x.round()}",8,2,255,0,255,255] outputs.labels << [128,328,"#{state.player_magenta.y.round()}",8,2,255,0,255,255] end end $camera_movement = CameraMovement.new def tick args args.outputs.background_color = [0,0,0] $camera_movement.inputs = args.inputs $camera_movement.outputs = args.outputs $camera_movement.state = args.state $camera_movement.grid = args.grid $camera_movement.tick endTweening Lerping Easing Functions - Easing Functions - main.rb
# ./samples/08_tweening_lerping_easing_functions/01_easing_functions/app/main.rb def tick args # STOP! Watch the following presentation first!!!! # Math for Game Programmers: Fast and Funky 1D Nonlinear Transformations # https://www.youtube.com/watch?v=mr5xkf6zSzk # You've watched the talk, yes? YES??? # define starting and ending points of properties to animate args.state.target_x = 1180 args.state.target_y = 620 args.state.target_w = 100 args.state.target_h = 100 args.state.starting_x = 0 args.state.starting_y = 0 args.state.starting_w = 300 args.state.starting_h = 300 # define start time and duration of animation args.state.start_animate_at = 3.seconds # this is the same as writing 60 * 5 (or 300) args.state.duration = 2.seconds # this is the same as writing 60 * 2 (or 120) # define type of animations # Here are all the options you have for values you can put in the array: # :identity, :quad, :cube, :quart, :quint, :flip # Linear is defined as: # [:identity] # # Smooth start variations are: # [:quad] # [:cube] # [:quart] # [:quint] # Linear reversed, and smooth stop are the same as the animations defined above, but reversed: # [:flip, :identity] # [:flip, :quad, :flip] # [:flip, :cube, :flip] # [:flip, :quart, :flip] # [:flip, :quint, :flip] # You can also do custom definitions. See the bottom of the file details # on how to do that. I've defined a couple for you: # [:smoothest_start] # [:smoothest_stop] # CHANGE THIS LINE TO ONE OF THE LINES ABOVE TO SEE VARIATIONS args.state.animation_type = [:identity] # args.state.animation_type = [:quad] # args.state.animation_type = [:cube] # args.state.animation_type = [:quart] # args.state.animation_type = [:quint] # args.state.animation_type = [:flip, :identity] # args.state.animation_type = [:flip, :quad, :flip] # args.state.animation_type = [:flip, :cube, :flip] # args.state.animation_type = [:flip, :quart, :flip] # args.state.animation_type = [:flip, :quint, :flip] # args.state.animation_type = [:smoothest_start] # args.state.animation_type = [:smoothest_stop] # THIS IS WHERE THE MAGIC HAPPENS! # Numeric#ease progress = args.state.start_animate_at.ease(args.state.duration, args.state.animation_type) # Numeric#ease needs to called: # 1. On the number that represents the point in time you want to start, and takes two parameters: # a. The first parameter is how long the animation should take. # b. The second parameter represents the functions that need to be called. # # For example, if I wanted an animate to start 3 seconds in, and last for 10 seconds, # and I want to animation to start fast and end slow, I would do: # (60 * 3).ease(60 * 10, :flip, :quint, :flip) # initial value delta to the final value calc_x = args.state.starting_x + (args.state.target_x - args.state.starting_x) * progress calc_y = args.state.starting_y + (args.state.target_y - args.state.starting_y) * progress calc_w = args.state.starting_w + (args.state.target_w - args.state.starting_w) * progress calc_h = args.state.starting_h + (args.state.target_h - args.state.starting_h) * progress args.outputs.solids << [calc_x, calc_y, calc_w, calc_h, 0, 0, 0] # count down count_down = args.state.start_animate_at - args.state.tick_count if count_down > 0 args.outputs.labels << [640, 375, "Running: #{args.state.animation_type} in...", 3, 1] args.outputs.labels << [640, 345, "%.2f" % count_down.fdiv(60), 3, 1] elsif progress >= 1 args.outputs.labels << [640, 360, "Click screen to reset.", 3, 1] if args.inputs.click $gtk.reset end end end # $gtk.reset # you can make own variations of animations using this module Easing # you have access to all the built in functions: identity, flip, quad, cube, quart, quint def self.smoothest_start x quad(quint(x)) end def self.smoothest_stop x flip(quad(quint(flip(x)))) end # this is the source for the existing easing functions def self.identity x x end def self.flip x 1 - x end def self.quad x x * x end def self.cube x x * x * x end def self.quart x x * x * x * x * x end def self.quint x x * x * x * x * x * x end endTweening Lerping Easing Functions - Cubic Bezier - main.rb
# ./samples/08_tweening_lerping_easing_functions/02_cubic_bezier/app/main.rb def tick args args.outputs.background_color = [33, 33, 33] args.outputs.lines << bezier(100, 100, 100, 620, 1180, 620, 1180, 100, 0) args.outputs.lines << bezier(100, 100, 100, 620, 1180, 620, 1180, 100, 20) end def bezier x1, y1, x2, y2, x3, y3, x4, y4, step step ||= 0 color = [200, 200, 200] points = points_for_bezier [x1, y1], [x2, y2], [x3, y3], [x4, y4], step points.each_cons(2).map do |p1, p2| [p1, p2, color] end end def points_for_bezier p1, p2, p3, p4, step points = [] if step == 0 [p1, p2, p3, p4] else t_step = 1.fdiv(step + 1) t = 0 t += t_step points = [] while t < 1 points << [ b_for_t(p1.x, p2.x, p3.x, p4.x, t), b_for_t(p1.y, p2.y, p3.y, p4.y, t), ] t += t_step end [ p1, *points, p4 ] end end def b_for_t v0, v1, v2, v3, t pow(1 - t, 3) * v0 + 3 * pow(1 - t, 2) * t * v1 + 3 * (1 - t) * pow(t, 2) * v2 + pow(t, 3) * v3 end def pow n, to n ** to endTweening Lerping Easing Functions - Easing Using Spline - main.rb
# ./samples/08_tweening_lerping_easing_functions/03_easing_using_spline/app/main.rb def tick args args.state.duration = 10.seconds args.state.spline = [ [0.0, 0.33, 0.66, 1.0], [1.0, 1.0, 1.0, 1.0], [1.0, 0.66, 0.33, 0.0], ] args.state.simulation_tick = args.state.tick_count % args.state.duration progress = 0.ease_spline_extended args.state.simulation_tick, args.state.duration, args.state.spline args.outputs.borders << args.grid.rect args.outputs.solids << [20 + 1240 * progress, 20 + 680 * progress, 20, 20].anchor_rect(0.5, 0.5) args.outputs.labels << [10, 710, "perc: #{"%.2f" % (args.state.simulation_tick / args.state.duration)} t: #{args.state.simulation_tick}"] endTweening Lerping Easing Functions - Parametric Enemy Movement - main.rb
# ./samples/08_tweening_lerping_easing_functions/04_parametric_enemy_movement/app/main.rb def new_star args { x: 1280.randomize(:ratio), starting_y: 800, distance_to_travel: 900 + 100.randomize(:ratio), duration: 100.randomize(:ratio) + 60, created_at: args.state.tick_count, max_alpha: 128.randomize(:ratio) + 128, b: 255.randomize(:ratio), g: 200.randomize(:ratio), w: 1.randomize(:ratio) + 1, h: 1.randomize(:ratio) + 1 } end def new_enemy args { x: 1280.randomize(:ratio), starting_y: 800, distance_to_travel: -900, duration: 60.randomize(:ratio) + 180, created_at: args.state.tick_count, w: 32, h: 32, fire_rate: (30.randomize(:ratio) + (60 - args.state.score)).to_i } end def new_bullet args, starting_x, starting_y, enemy_speed { x: starting_x, starting_y: starting_y, distance_to_travel: -900, created_at: args.state.tick_count, duration: 900 / (enemy_speed.abs + 2.0 + (5.0 * args.state.score.fdiv(100))).abs, w: 5, h: 5 } end def new_player_bullet args, starting_x, starting_y, player_speed { x: starting_x, starting_y: starting_y, distance_to_travel: 900, created_at: args.state.tick_count, duration: 900 / (player_speed + 2.0), w: 5, h: 5 } end def defaults args args.outputs.background_color = [0, 0, 0] args.state.score ||= 0 args.state.stars ||= [] args.state.enemies ||= [] args.state.bullets ||= [] args.state.player_bullets ||= [] args.state.max_stars = 50 args.state.max_enemies = 10 args.state.player.x ||= 640 args.state.player.y ||= 100 args.state.player.w ||= 32 args.state.player.h ||= 32 if args.state.tick_count == 0 args.state.stars.clear args.state.max_stars.times do s = new_star args s[:created_at] += s[:duration].randomize(:ratio) args.state.stars << s end end if args.state.tick_count == 0 args.state.enemies.clear args.state.max_enemies.times do s = new_enemy args s[:created_at] += s[:duration].randomize(:ratio) args.state.enemies << s end end end def input args if args.inputs.keyboard.left args.state.player.x -= 5 elsif args.inputs.keyboard.right args.state.player.x += 5 end if args.inputs.keyboard.up args.state.player.y += 5 elsif args.inputs.keyboard.down args.state.player.y -= 5 end if args.inputs.keyboard.key_down.space args.state.player_bullets << new_player_bullet(args, args.state.player.x + args.state.player.w.half, args.state.player.y + args.state.player.h, 5) end args.state.player.y = args.state.player.y.greater(0).lesser(720 - args.state.player.w) args.state.player.x = args.state.player.x.greater(0).lesser(1280 - args.state.player.h) end def completed? entity (entity[:created_at] + entity[:duration]).elapsed_time > 0 end def calc_stars args if (stars_to_add = args.state.max_stars - args.state.stars.length) > 0 stars_to_add.times { args.state.stars << new_star(args) } end args.state.stars = args.state.stars.reject { |s| completed? s } end def move_enemies args if (enemies_to_add = args.state.max_enemies - args.state.enemies.length) > 0 enemies_to_add.times { args.state.enemies << new_enemy(args) } end args.state.enemies = args.state.enemies.reject { |s| completed? s } end def move_bullets args args.state.enemies.each do |e| if args.state.tick_count.mod_zero?(e[:fire_rate]) args.state.bullets << new_bullet(args, e[:x] + e[:w].half, current_y(e), e[:distance_to_travel] / e[:duration]) end end args.state.bullets = args.state.bullets.reject { |s| completed? s } args.state.player_bullets = args.state.player_bullets.reject { |s| completed? s } end def intersect? entity_one, entity_two entity_one.merge(y: current_y(entity_one)) .intersect_rect? entity_two.merge(y: current_y(entity_two)) end def kill args bullets_hitting_enemies = [] dead_bullets = [] dead_enemies = [] args.state.player_bullets.each do |b| args.state.enemies.each do |e| if intersect? b, e dead_bullets << b dead_enemies << e end end end args.state.score += dead_enemies.length args.state.player_bullets.reject! { |b| dead_bullets.include? b } args.state.enemies.reject! { |e| dead_enemies.include? e } dead = args.state.bullets.any? do |b| [args.state.player.x, args.state.player.y, args.state.player.w, args.state.player.h].intersect_rect? b.merge(y: current_y(b)) end return unless dead args.gtk.reset defaults args end def calc args calc_stars args move_enemies args move_bullets args kill args end def current_y entity entity[:starting_y] + (entity[:distance_to_travel] * entity[:created_at].ease(entity[:duration], :identity)) end def render args args.outputs.solids << args.state.stars.map do |s| [s[:x], current_y(s), s[:w], s[:h], 0, s[:g], s[:b], s[:max_alpha] * s[:created_at].ease(20, :identity)] end args.outputs.borders << args.state.enemies.map do |s| [s[:x], current_y(s), s[:w], s[:h], 255, 0, 0] end args.outputs.borders << args.state.bullets.map do |b| [b[:x], current_y(b), b[:w], b[:h], 255, 0, 0] end args.outputs.borders << args.state.player_bullets.map do |b| [b[:x], current_y(b), b[:w], b[:h], 255, 255, 255] end args.borders << [args.state.player.x, args.state.player.y, args.state.player.w, args.state.player.h, 255, 255, 255] end def tick args defaults args input args calc args render args endPerformance - Sprites As Hash - main.rb
# ./samples/09_performance/01_sprites_as_hash/app/main.rb # Sprites represented as Hashes using the queue ~args.outputs.sprites~ # code up, but are the "slowest" to render. # The reason for this is the access of the key in the Hash and also # because the data args.outputs.sprites is cleared every tick. def random_x args (args.grid.w.randomize :ratio) * -1 end def random_y args (args.grid.h.randomize :ratio) * -1 end def random_speed 1 + (4.randomize :ratio) end def new_star args { x: (random_x args), y: (random_y args), w: 4, h: 4, path: 'sprites/tiny-star.png', s: random_speed } end def move_star args, star star.x += star[:s] star.y += star[:s] if star.x > args.grid.w || star.y > args.grid.h star.x = (random_x args) star.y = (random_y args) star[:s] = random_speed end end def tick args args.state.star_count ||= 0 # sets console command when sample app initially opens if Kernel.global_tick_count == 0 puts "* INFO - Please specify the number of sprites to render." args.gtk.console.set_command "reset_with count: 100" end # init if args.state.tick_count == 0 args.state.stars = args.state.star_count.map { |i| new_star args } end # update args.state.stars.each { |s| move_star args, s } # render args.outputs.sprites << args.state.stars args.outputs.background_color = [0, 0, 0] args.outputs.primitives << args.gtk.current_framerate_primitives end # resets game, and assigns star count given by user def reset_with count: count $gtk.reset $gtk.args.state.star_count = count endPerformance - Sprites As Entities - main.rb
# ./samples/09_performance/02_sprites_as_entities/app/main.rb # Sprites represented as Entities using the queue ~args.outputs.sprites~ # yields nicer access apis over Hashes, but require a bit more code upfront. # The hash sample has to use star[:s] to get the speed of the star, but # an entity can use .s instead. def random_x args (args.grid.w.randomize :ratio) * -1 end def random_y args (args.grid.h.randomize :ratio) * -1 end def random_speed 1 + (4.randomize :ratio) end def new_star args args.state.new_entity :star, { x: (random_x args), y: (random_y args), w: 4, h: 4, path: 'sprites/tiny-star.png', s: random_speed } end def move_star args, star star.x += star.s star.y += star.s if star.x > args.grid.w || star.y > args.grid.h star.x = (random_x args) star.y = (random_y args) star.s = random_speed end end def tick args args.state.star_count ||= 0 # sets console command when sample app initially opens if Kernel.global_tick_count == 0 puts "* INFO - Please specify the number of sprites to render." args.gtk.console.set_command "reset_with count: 100" end # init if args.state.tick_count == 0 args.state.stars = args.state.star_count.map { |i| new_star args } end # update args.state.stars.each { |s| move_star args, s } # render args.outputs.sprites << args.state.stars args.outputs.background_color = [0, 0, 0] args.outputs.primitives << args.gtk.current_framerate_primitives end # resets game, and assigns star count given by user def reset_with count: count $gtk.reset $gtk.args.state.star_count = count endPerformance - Sprites As Strict Entities - main.rb
# ./samples/09_performance/03_sprites_as_strict_entities/app/main.rb # Sprites represented as StrictEntities using the queue ~args.outputs.sprites~ # yields apis access similar to Entities, but all properties that can be set on the # entity must be predefined with a default value. Strict entities do not support the # addition of new properties after the fact. They are more performant than OpenEntities # because of this constraint. def random_x args (args.grid.w.randomize :ratio) * -1 end def random_y args (args.grid.h.randomize :ratio) * -1 end def random_speed 1 + (4.randomize :ratio) end def new_star args args.state.new_entity_strict(:star, x: (random_x args), y: (random_y args), w: 4, h: 4, path: 'sprites/tiny-star.png', s: random_speed) do |entity| # invoke attr_sprite so that it responds to # all properties that are required to render a sprite entity.attr_sprite end end def move_star args, star star.x += star.s star.y += star.s if star.x > args.grid.w || star.y > args.grid.h star.x = (random_x args) star.y = (random_y args) star.s = random_speed end end def tick args args.state.star_count ||= 0 # sets console command when sample app initially opens if Kernel.global_tick_count == 0 puts "* INFO - Please specify the number of sprites to render." args.gtk.console.set_command "reset_with count: 100" end # init if args.state.tick_count == 0 args.state.stars = args.state.star_count.map { |i| new_star args } end # update args.state.stars.each { |s| move_star args, s } # render args.outputs.sprites << args.state.stars args.outputs.background_color = [0, 0, 0] args.outputs.primitives << args.gtk.current_framerate_primitives end # resets game, and assigns star count given by user def reset_with count: count $gtk.reset $gtk.args.state.star_count = count endPerformance - Sprites As Classes - main.rb
# ./samples/09_performance/04_sprites_as_classes/app/main.rb # Sprites represented as Classes using the queue ~args.outputs.sprites~. # gives you full control of property declaration and method invocation. # They are more performant than OpenEntities and StrictEntities, but more code upfront. class Star attr_sprite def initialize grid @grid = grid @x = (rand @grid.w) * -1 @y = (rand @grid.h) * -1 @w = 4 @h = 4 @s = 1 + (4.randomize :ratio) @path = 'sprites/tiny-star.png' end def move @x += @s @y += @s @x = (rand @grid.w) * -1 if @x > @grid.right @y = (rand @grid.h) * -1 if @y > @grid.top end end # calls methods needed for game to run properly def tick args # sets console command when sample app initially opens if Kernel.global_tick_count == 0 args.gtk.console.set_command "reset_with count: 100" end # init if args.state.tick_count == 0 args.state.stars = args.state.star_count.map { |i| Star.new args.grid } end # update args.state.stars.each(&:move) # render args.outputs.sprites << args.state.stars args.outputs.background_color = [0, 0, 0] args.outputs.primitives << args.gtk.current_framerate_primitives end # resets game, and assigns star count given by user def reset_with count: count $gtk.reset $gtk.args.state.star_count = count endPerformance - Static Sprites As Classes - main.rb
# ./samples/09_performance/05_static_sprites_as_classes/app/main.rb # Sprites represented as Classes using the queue ~args.outputs.static_sprites~. # bypasses the queue behavior of ~args.outputs.sprites~. All instances are held # by reference. You get better performance, but you are mutating state of held objects # which is less functional/data oriented. class Star attr_sprite def initialize grid @grid = grid @x = (rand @grid.w) * -1 @y = (rand @grid.h) * -1 @w = 4 @h = 4 @s = 1 + (4.randomize :ratio) @path = 'sprites/tiny-star.png' end def move @x += @s @y += @s @x = (rand @grid.w) * -1 if @x > @grid.right @y = (rand @grid.h) * -1 if @y > @grid.top end end # calls methods needed for game to run properly def tick args # sets console command when sample app initially opens if Kernel.global_tick_count == 0 args.gtk.console.set_command "reset_with count: 100" end # init if args.state.tick_count == 0 args.state.stars = args.state.star_count.map { |i| Star.new args.grid } end # update args.state.stars.each(&:move) # render args.outputs.sprites << args.state.stars args.outputs.background_color = [0, 0, 0] args.outputs.primitives << args.gtk.current_framerate_primitives end # resets game, and assigns star count given by user def reset_with count: count $gtk.reset $gtk.args.state.star_count = count endPerformance - Static Sprites As Classes With Custom Drawing - main.rb
# ./samples/09_performance/06_static_sprites_as_classes_with_custom_drawing/app/main.rb # Sprites represented as Classes, with a draw_override method, and using the queue ~args.outputs.static_sprites~. # is the fastest approach. This is comparable to what other game engines set as the default behavior. # There are tradeoffs for all this speed if the creation of a full blown class, and bypassing # functional/data-oriented practices. class Star def initialize grid @grid = grid @x = (rand @grid.w) * -1 @y = (rand @grid.h) * -1 @w = 4 @h = 4 @s = 1 + (4.randomize :ratio) @path = 'sprites/tiny-star.png' end def move @x += @s @y += @s @x = (rand @grid.w) * -1 if @x > @grid.right @y = (rand @grid.h) * -1 if @y > @grid.top end # if the object that is in args.outputs.sprites (or static_sprites) # respond_to? :draw_override, then the method is invoked giving you # access to the class used to draw to the canvas. def draw_override ffi_draw # first move then draw move # The argument order for ffi.draw_sprite is: # x, y, w, h, path ffi_draw.draw_sprite @x, @y, @w, @h, @path # The argument order for ffi_draw.draw_sprite_2 is (pass in nil for default value): # x, y, w, h, path, # angle, alpha # The argument order for ffi_draw.draw_sprite_3 is: # x, y, w, h, # path, # angle, # alpha, red_saturation, green_saturation, blue_saturation # flip_horizontally, flip_vertically, # tile_x, tile_y, tile_w, tile_h # angle_anchor_x, angle_anchor_y, # source_x, source_y, source_w, source_h end end # calls methods needed for game to run properly def tick args # sets console command when sample app initially opens if Kernel.global_tick_count == 0 args.gtk.console.set_command "reset_with count: 100" end # init if args.state.tick_count == 0 args.state.stars = args.state.star_count.map { |i| Star.new args.grid } args.outputs.static_sprites << args.state.stars end # render framerate args.outputs.background_color = [0, 0, 0] args.outputs.primitives << args.gtk.current_framerate_primitives end # resets game, and assigns star count given by user def reset_with count: count $gtk.reset $gtk.args.state.star_count = count endPerformance - Collision Limits - main.rb
# ./samples/09_performance/07_collision_limits/app/main.rb =begin Reminders: - find_all: Finds all elements of a collection that meet certain requirements. In this sample app, we're finding all bodies that intersect with the center body. - args.outputs.solids: An array. The values generate a solid. The parameters are [X, Y, WIDTH, HEIGHT, RED, GREEN, BLUE] For more information about solids, go to mygame/documentation/03-solids-and-borders.md. - args.outputs.labels: An array. The values generate a label. The parameters are [X, Y, TEXT, SIZE, ALIGNMENT, RED, GREEN, BLUE, ALPHA, FONT STYLE] For more information about labels, go to mygame/documentation/02-labels.md. - ARRAY#intersect_rect?: Returns true or false depending on if two rectangles intersect. =end # This code demonstrates moving objects that loop around once they exceed the scope of the screen, # which has dimensions of 1280 by 720, and also detects collisions between objects called "bodies". def body_count num $gtk.args.state.other_bodies = num.map { [1280 * rand, 720 * rand, 10, 10] } # other_bodies set using num collection end def tick args # Center body's values are set using an array # Map is used to set values of 2000 other bodies # All bodies that intersect with center body are stored in collisions collection args.state.center_body ||= [640 - 100, 360 - 100, 200, 200] # calculations done to place body in center args.state.other_bodies ||= 2000.map { [1280 * rand, 720 * rand, 10, 10] } # 2000 bodies given random position on screen # finds all bodies that intersect with center body, stores them in collisions collisions = args.state.other_bodies.find_all { |b| b.intersect_rect? args.state.center_body } args.borders << args.state.center_body # outputs center body as a black border # transparency changes based on number of collisions; the more collisions, the redder (more transparent) the box becomes args.solids << [args.state.center_body, 255, 0, 0, collisions.length * 5] # center body is red solid args.solids << args.state.other_bodies # other bodies are output as (black) solids, as well args.labels << [10, 30, args.gtk.current_framerate] # outputs frame rate in bottom left corner # Bodies are returned to bottom left corner if positions exceed scope of screen args.state.other_bodies.each do |b| # for each body in the other_bodies collection b.x += 5 # x and y are both incremented by 5 b.y += 5 b.x = 0 if b.x > 1280 # x becomes 0 if star exceeds scope of screen (goes too far right) b.y = 0 if b.y > 720 # y becomes 0 if star exceeds scope of screen (goes too far up) end end # Resets the game. $gtk.resetAdvanced Debugging - Trace Debugging - main.rb
# ./samples/10_advanced_debugging/01_trace_debugging/app/main.rb class Game attr_gtk def method1 num method2 num end def method2 num method3 num end def method3 num method4 num end def method4 num if num == 1 puts "UNLUCKY #{num}." state.unlucky_count += 1 if state.unlucky_count > 3 raise "NAT 1 finally occurred. Check app/trace.txt for all method invocation history." end else puts "LUCKY #{num}." end end def tick state.roll_history ||= [] state.roll_history << rand(20) + 1 state.countdown ||= 600 state.countdown -= 1 state.unlucky_count ||= 0 outputs.labels << [640, 360, "A dice roll of 1 will cause an exception.", 0, 1] if state.countdown > 0 outputs.labels << [640, 340, "Dice roll countdown: #{state.countdown}", 0, 1] else state.attempts ||= 0 state.attempts += 1 outputs.labels << [640, 340, "ROLLING! #{state.attempts}", 0, 1] end return if state.countdown > 0 method1 state.roll_history[-1] end end $game = Game.new def tick args trace! $game # <------------------- TRACING ENABLED FOR THIS OBJECT $game.args = args $game.tick endAdvanced Debugging - Trace Debugging Classes - main.rb
# ./samples/10_advanced_debugging/02_trace_debugging_classes/app/main.rb class Foobar def initialize trace! # Trace is added to the constructor. end def clicky args return unless args.inputs.mouse.click try_rand rand end def try_rand num return if num < 0.9 raise "Exception finally occurred. Take a look at logs/trace.txt #{num}." end end def tick args args.labels << [640, 360, "Start clicking. Eventually an exception will be thrown. Then look at logs/trace.txt.", 0, 1] args.state.foobar = Foobar.new if args.tick_count return unless args.state.foobar args.state.foobar.clicky args endAdvanced Debugging - Unit Tests - exception_raising_tests.rb
# ./samples/10_advanced_debugging/03_unit_tests/exception_raising_tests.rb begin :shared class ExceptionalClass def initialize exception_to_throw = nil raise exception_to_throw if exception_to_throw end end end def test_exception_in_newing_object args, assert begin ExceptionalClass.new TypeError raise "Exception wasn't thrown!" rescue Exception => e assert.equal! e.class, TypeError, "Exceptions within constructor should be retained." end end $gtk.reset 100 $gtk.log_level = :offAdvanced Debugging - Unit Tests - gen_docs.rb
# ./samples/10_advanced_debugging/03_unit_tests/gen_docs.rb # ./dragonruby mygame --eval samples/99_zz_gtk_unit_tests/gen_docs.rb --no-tick Kernel.export_docs!Advanced Debugging - Unit Tests - geometry_tests.rb
# ./samples/10_advanced_debugging/03_unit_tests/geometry_tests.rb begin :shared def primitive_representations x, y, w, h [ [x, y, w, h], { x: x, y: y, w: w, h: h }, RectForTest.new(x, y, w, h) ] end class RectForTest attr_sprite def initialize x, y, w, h @x = x @y = y @w = w @h = h end def to_s "RectForTest: #{[x, y, w, h]}" end end end begin :intersect_rect? def test_intersect_rect_point args, assert assert.true! [16, 13].intersect_rect?([13, 12, 4, 4]), "point intersects with rect." end def test_intersect_rect args, assert intersecting = primitive_representations(0, 0, 100, 100) + primitive_representations(20, 20, 20, 20) intersecting.product(intersecting).each do |rect_one, rect_two| assert.true! rect_one.intersect_rect?(rect_two), "intersect_rect? assertion failed for #{rect_one}, #{rect_two} (expected true)." end not_intersecting = [ [ 0, 0, 5, 5], { x: 10, y: 10, w: 5, h: 5 }, RectForTest.new(20, 20, 5, 5) ] not_intersecting.product(not_intersecting) .reject { |rect_one, rect_two| rect_one == rect_two } .each do |rect_one, rect_two| assert.false! rect_one.intersect_rect?(rect_two), "intersect_rect? assertion failed for #{rect_one}, #{rect_two} (expected false)." end end end begin :inside_rect? def assert_inside_rect outer: nil, inner: nil, expected: nil, assert: nil assert.true! inner.inside_rect?(outer) == expected, "inside_rect? assertion failed for outer: #{outer} inner: #{inner} (expected #{expected})." end def test_inside_rect args, assert outer_rects = primitive_representations(0, 0, 10, 10) inner_rects = primitive_representations(1, 1, 5, 5) primitive_representations(0, 0, 10, 10).product(primitive_representations(1, 1, 5, 5)) .each do |outer, inner| assert_inside_rect outer: outer, inner: inner, expected: true, assert: assert end end end begin :angle_to def test_angle_to args, assert origins = primitive_representations(0, 0, 0, 0) rights = primitive_representations(1, 0, 0, 0) aboves = primitive_representations(0, 1, 0, 0) origins.product(aboves).each do |origin, above| assert.equal! origin.angle_to(above), 90, "A point directly above should be 90 degrees." assert.equal! above.angle_from(origin), 90, "A point coming from above should be 90 degrees." end origins.product(rights).each do |origin, right| assert.equal! origin.angle_to(right) % 360, 0, "A point directly to the right should be 0 degrees." assert.equal! right.angle_from(origin) % 360, 0, "A point coming from the right should be 0 degrees." end end end begin :scale_rect def test_scale_rect args, assert assert.equal! [0, 0, 100, 100].scale_rect(0.5, 0.5), [25.0, 25.0, 50.0, 50.0] assert.equal! [0, 0, 100, 100].scale_rect(0.5), [0.0, 0.0, 50.0, 50.0] assert.equal! [0, 0, 100, 100].scale_rect_extended(percentage_x: 0.5, percentage_y: 0.5, anchor_x: 0.5, anchor_y: 0.5), [25.0, 25.0, 50.0, 50.0] assert.equal! [0, 0, 100, 100].scale_rect_extended(percentage_x: 0.5, percentage_y: 0.5, anchor_x: 0, anchor_y: 0), [0.0, 0.0, 50.0, 50.0] end end $gtk.reset 100 $gtk.log_level = :offAdvanced Debugging - Unit Tests - http_tests.rb
# ./samples/10_advanced_debugging/03_unit_tests/http_tests.rb def try_assert_or_schedule args, assert if $result[:complete] log_info "Request completed! Verifying." if $result[:http_response_code] != 200 log_info "The request yielded a result of #{$result[:http_response_code]} instead of 200." exit end log_info ":try_assert_or_schedule succeeded!" else args.gtk.schedule_callback Kernel.tick_count + 10 do try_assert_or_schedule args, assert end end end def test_http args, assert $result = $gtk.http_get 'http://dragonruby.org' try_assert_or_schedule args, assert end $gtk.reset 100 $gtk.log_level = :offAdvanced Debugging - Unit Tests - object_to_primitive_tests.rb
# ./samples/10_advanced_debugging/03_unit_tests/object_to_primitive_tests.rb class PlayerSpriteForTest end def test_array_to_sprite args, assert array = [[0, 0, 100, 100, "test.png"]].sprites puts "No exception was thrown. Sweet!" end def test_class_to_sprite args, assert array = [PlayerSprite.new].sprites assert.true! array.first.is_a?(PlayerSprite) puts "No exception was thrown. Sweet!" end $gtk.reset 100 $gtk.log_level = :offAdvanced Debugging - Unit Tests - parsing_tests.rb
# ./samples/10_advanced_debugging/03_unit_tests/parsing_tests.rb def test_parse_json args, assert result = args.gtk.parse_json '{ "name": "John Doe", "aliases": ["JD"] }' assert.equal! result, { "name"=>"John Doe", "aliases"=>["JD"] }, "Parsing JSON failed." end def test_parse_xml args, assert result = args.gtk.parse_xml <<-SS expected = {:type=>:element, :name=>nil, :children=>[{:type=>:element, :name=>"Person", :children=>[{:type=>:element, :name=>"Name", :children=>[{:type=>:content, :data=>"John Doe"}]}], :attributes=>{"id"=>"100"}}]} assert.equal! result, expected, "Parsing xml failed." end $gtk.reset 100 $gtk.log_level = :off John Doe Advanced Debugging - Unit Tests - require_tests.rb
# ./samples/10_advanced_debugging/03_unit_tests/require_tests.rb def write_src path, src $gtk.write_file path, src end write_src 'app/unit_testing_game.rb', <<-S module UnitTesting class Game end end S write_src 'lib/unit_testing_lib.rb', <<-S module UnitTesting class Lib end end S write_src 'app/nested/unit_testing_nested.rb', <<-S module UnitTesting class Nested end end S require 'app/unit_testing_game.rb' require 'app/nested/unit_testing_nested.rb' require 'lib/unit_testing_lib.rb' def test_require args, assert UnitTesting::Game.new UnitTesting::Lib.new UnitTesting::Nested.new $gtk.exec 'rm ./mygame/app/unit_testing_game.rb' $gtk.exec 'rm ./mygame/app/nested/unit_testing_nested.rb' $gtk.exec 'rm ./mygame/lib/unit_testing_lib.rb' assert.ok! endAdvanced Debugging - Unit Tests - serialize_deserialize_tests.rb
# ./samples/10_advanced_debugging/03_unit_tests/serialize_deserialize_tests.rb def test_serialize args, assert GTK::Entity.__reset_id__! args.state.player_one = "test" result = args.gtk.serialize_state args.state assert.equal! result, "{:entity_id=>3, :entity_keys_by_ref=>{}, :tick_count=>-1, :player_one=>\"test\"}" GTK::Entity.__reset_id__! args.gtk.write_file 'state.txt', '' result = args.gtk.serialize_state 'state.txt', args.state assert.equal! result, "{:entity_id=>3, :entity_keys_by_ref=>{}, :tick_count=>-1, :player_one=>\"test\"}" end def test_deserialize args, assert GTK::Entity.__reset_id__! result = args.gtk.deserialize_state '{:entity_id=>3, :tick_count=>-1, :player_one=>"test"}' assert.equal! result.player_one, "test" GTK::Entity.__reset_id__! args.gtk.write_file 'state.txt', '{:entity_id=>3, :tick_count=>-1, :player_one=>"test"}' result = args.gtk.deserialize_state 'state.txt' assert.equal! result.player_one, "test" end def test_very_large_serialization args, assert GTK::Entity.__reset_id__! size = 3000 size.map_with_index do |i| args.state.send("k#{i}=".to_sym, i) end result = args.gtk.serialize_state args.state assert.true! (args.gtk.console.log.join.include? "unlikely a string this large will deserialize correctly") end def test_strict_entity_serialization args, assert GTK::Entity.__reset_id__! args.state.player_one = args.state.new_entity(:player, name: "Ryu") args.state.player_two = args.state.new_entity_strict(:player_strict, name: "Ken") serialized_state = args.gtk.serialize_state args.state assert.equal! serialized_state, '{:entity_id=>1, :entity_keys_by_ref=>{}, :tick_count=>-1, :player_one=>{:entity_id=>1, :entity_name=>:player, :entity_keys_by_ref=>{}, :entity_type=>:player, :created_at=>-1, :global_created_at=>-1, :name=>"Ryu"}, :player_two=>{:entity_id=>3, :entity_name=>:player_strict, :entity_type=>:player_strict, :created_at=>-1, :global_created_at_elapsed=>-1, :entity_strict=>true, :entity_keys_by_ref=>{:entity_type=>:entity_name, :global_created_at_elapsed=>:created_at}, :name=>"Ken"}}' GTK::Entity.__reset_id__! deserialize_state = args.gtk.deserialize_state serialized_state assert.equal! args.state.player_one.name, deserialize_state.player_one.name assert.true! args.state.player_one.is_a? GTK::OpenEntity assert.equal! args.state.player_two.name, deserialize_state.player_two.name assert.true! args.state.player_two.is_a? GTK::StrictEntity end def test_strict_entity_serialization_with_nil args, assert GTK::Entity.__reset_id__! args.state.player_one = args.state.new_entity(:player, name: "Ryu") args.state.player_two = args.state.new_entity_strict(:player_strict, name: "Ken", blood_type: nil) serialized_state = args.gtk.serialize_state args.state assert.equal! serialized_state, '{:entity_id=>9, :entity_keys_by_ref=>{}, :tick_count=>-1, :player_one=>{:entity_id=>1, :entity_name=>:player, :entity_keys_by_ref=>{}, :entity_type=>:player, :created_at=>-1, :global_created_at=>-1, :name=>"Ryu"}, :player_two=>{:entity_id=>2, :entity_name=>:player_strict, :entity_type=>:player_strict, :created_at=>-1, :global_created_at_elapsed=>-1, :entity_strict=>true, :entity_keys_by_ref=>{:entity_type=>:entity_name, :global_created_at_elapsed=>:created_at}, :name=>"Ken", :blood_type=>nil}}' GTK::Entity.__reset_id__! deserialized_state = args.gtk.deserialize_state serialized_state assert.equal! args.state.player_one.name, deserialized_state.player_one.name assert.true! args.state.player_one.is_a? GTK::OpenEntity assert.equal! args.state.player_two.name, deserialized_state.player_two.name assert.equal! args.state.player_two.blood_type, deserialized_state.player_two.blood_type assert.equal! deserialized_state.player_two.blood_type, nil assert.true! args.state.player_two.is_a? GTK::StrictEntity deserialized_state.player_two.blood_type = :O assert.equal! deserialized_state.player_two.blood_type, :O end def test_multiple_strict_entities args, assert GTK::Entity.__reset_id__! args.state.player = args.state.new_entity_strict(:player_one, name: "Ryu") args.state.enemy = args.state.new_entity_strict(:enemy, name: "Bison", other_property: 'extra mean') serialized_state = args.gtk.serialize_state args.state GTK::Entity.__reset_id__! deserialized_state = args.gtk.deserialize_state serialized_state assert.equal! deserialized_state.player.name, "Ryu" assert.equal! deserialized_state.enemy.other_property, "extra mean" end def test_by_reference_state args, assert GTK::Entity.__reset_id__! args.state.a = { name: "Jane Doe" } args.state.b = args.state.a assert.equal! args.state.a.object_id, args.state.b.object_id serialized_state = args.gtk.serialize_state args.state GTK::Entity.__reset_id__! deserialized_state = args.gtk.deserialize_state serialized_state assert.equal! deserialized_state.a.object_id, deserialized_state.b.object_id end def test_by_reference_state_strict_entities args, assert GTK::Entity.__reset_id__! args.state.a = { name: "Jane Doe" } args.state.strict_entity = args.state.new_entity_strict(:couple) do |e| e.one = args.state.new_entity_strict(:person, name: "Jane") e.two = e.one end assert.equal! args.state.strict_entity.one, args.state.strict_entity.two serialized_state = args.gtk.serialize_state args.state GTK::Entity.__reset_id__! deserialized_state = args.gtk.deserialize_state serialized_state assert.equal! deserialized_state.strict_entity.one, deserialized_state.strict_entity.two endAdvanced Debugging - Unit Tests - state_serialization_experimental_tests.rb
# ./samples/10_advanced_debugging/03_unit_tests/state_serialization_experimental_tests.rb MAX_CODE_GEN_LENGTH = 50 # NOTE: This is experimental/advanced stuff. def needs_partitioning? target target[:value].to_s.length > MAX_CODE_GEN_LENGTH end def partition target return [] unless needs_partitioning? target if target[:value].is_a? GTK::OpenEntity target[:value] = target[:value].hash end results = [] idx = 0 left, right = target[:value].partition do idx += 1 idx.even? end left, right = Hash[left], Hash[right] left = { value: left } right = { value: right} [left, right] end def add_partition target, path, aggregate, final_result partitions = partition target partitions.each do |part| if needs_partitioning? part if part[:value].keys.length == 1 first_key = part[:value].keys[0] new_part = { value: part[:value][first_key] } path.push first_key add_partition new_part, path, aggregate, final_result path.pop else add_partition part, path, aggregate, final_result end else final_result << { value: { __path__: [*path] } } final_result << { value: part[:value] } end end end def state_to_string state parts_queue = [] final_queue = [] add_partition({ value: state.hash }, [], parts_queue, final_queue) final_queue.reject {|i| i[:value].keys.length == 0}.map do |i| i[:value].to_s end.join("\n#==================================================#\n") end def state_from_string string Kernel.eval("$load_data = {}") lines = string.split("\n#==================================================#\n") lines.each do |l| puts "todo: #{l}" end GTK::OpenEntity.parse_from_hash $load_data end def test_save_and_load args, assert args.state.item_1.name = "Jane" string = state_to_string args.state state = state_from_string string assert.equal! args.state.item_1.name, state.item_1.name end def test_save_and_load_big args, assert size = 1000 size.map_with_index do |i| args.state.send("k#{i}=".to_sym, i) end string = state_to_string args.state state = state_from_string string size.map_with_index do |i| assert.equal! args.state.send("k#{i}".to_sym), state.send("k#{i}".to_sym) assert.equal! args.state.send("k#{i}".to_sym), i assert.equal! state.send("k#{i}".to_sym), i end end def test_save_and_load_big_nested args, assert args.state.player_one.friend.nested_hash.k0 = 0 args.state.player_one.friend.nested_hash.k1 = 1 args.state.player_one.friend.nested_hash.k2 = 2 args.state.player_one.friend.nested_hash.k3 = 3 args.state.player_one.friend.nested_hash.k4 = 4 args.state.player_one.friend.nested_hash.k5 = 5 args.state.player_one.friend.nested_hash.k6 = 6 args.state.player_one.friend.nested_hash.k7 = 7 args.state.player_one.friend.nested_hash.k8 = 8 args.state.player_one.friend.nested_hash.k9 = 9 string = state_to_string args.state state = state_from_string string end $gtk.reset 100 $gtk.log_level = :offAdvanced Debugging - Unit Tests - suggest_autocompletion_tests.rb
# ./samples/10_advanced_debugging/03_unit_tests/suggest_autocompletion_tests.rb def default_suggest_autocompletion args { index: 4, text: "args.", __meta__: { other_options: [ { index: Fixnum, file: "app/main.rb" } ] } } end def assert_completion source, *expected results = suggest_autocompletion text: (source.strip.gsub ":cursor", ""), index: (source.strip.index ":cursor") puts results end def test_args_completion args, assert $gtk.write_file_root "autocomplete.txt", ($gtk.suggest_autocompletion text: <<-S, index: 128).join("\n") require 'app/game.rb' def tick args args.gtk.suppress_mailbox = false $game ||= Game.new $game.args = args $game.args. $game.tick end S puts "contents:" puts ($gtk.read_file "autocomplete.txt") endHttp - Retrieve Images - main.rb
# ./samples/11_http/01_retrieve_images/app/main.rb def tick args args.outputs.background_color = [0, 0, 0] # Show a warning at the start. args.state.warning_debounce ||= 11 * 60 if args.state.warning_debounce > 0 args.state.warning_debounce -= 1 args.outputs.labels << [640, 600, "This app shows random images from the Internet.", 10, 1, 255, 255, 255] args.outputs.labels << [640, 500, "Quit in the next few seconds if this is a problem.", 10, 1, 255, 255, 255] args.outputs.labels << [640, 350, "#{(args.state.warning_debounce / 60.0).to_i}", 10, 1, 255, 255, 255] return end args.state.download_debounce ||= 0 # start immediately, reset to non zero later. args.state.photos ||= [] # Put a little pause between each download. if args.state.download.nil? if args.state.download_debounce > 0 args.state.download_debounce -= 1 else args.state.download = $gtk.http_get 'https://picsum.photos/200/300.jpg' end end if !args.state.download.nil? if args.state.download[:complete] if args.state.download[:http_response_code] == 200 fname = "sprites/#{args.state.photos.length}.jpg" $gtk.write_file fname, args.state.download[:response_data] args.state.photos << [ 100 + rand(1080), 500 - rand(480), fname, rand(80) - 40 ] end args.state.download = nil args.state.download_debounce = (rand(3) + 2) * 60 end end # draw any downloaded photos... args.state.photos.each { |i| args.outputs.primitives << [i[0], i[1], 200, 300, i[2], i[3]].sprite } # Draw a download progress bar... args.outputs.primitives << [0, 0, 1280, 30, 0, 0, 0, 255].solid if !args.state.download.nil? br = args.state.download[:response_read] total = args.state.download[:response_total] if total != 0 pct = br.to_f / total.to_f args.outputs.primitives << [0, 0, 1280 * pct, 30, 0, 0, 255, 255].solid end end end12 C Extensions - Basics - main.rb
# ./samples/12_c_extensions/01_basics/app/main.rb $gtk.ffi_misc.gtk_dlopen("ext") include FFI::CExt def tick args args.outputs.labels << [640, 500, "mouse.x = #{args.mouse.x.to_i}", 5, 1] args.outputs.labels << [640, 460, "square(mouse.x) = #{square(args.mouse.x.to_i)}", 5, 1] args.outputs.labels << [640, 420, "mouse.y = #{args.mouse.y.to_i}", 5, 1] args.outputs.labels << [640, 380, "square(mouse.y) = #{square(args.mouse.y.to_i)}", 5, 1] end12 C Extensions - Intermediate - main.rb
# ./samples/12_c_extensions/02_intermediate/app/main.rb $gtk.ffi_misc.gtk_dlopen("ext") include FFI::RE def split_words(input) words = [] last = IntPointer.new re = re_compile("\\w+") first = re_matchp(re, input, last) while first != -1 words << input.slice(first, last.value) input = input.slice(last.value + first, input.length) first = re_matchp(re, input, last) end words end def tick args args.outputs.labels << [640, 500, split_words("hello, dragonriders!").join(' '), 5, 1] end12 C Extensions - Native Pixel Arrays - main.rb
# ./samples/12_c_extensions/03_native_pixel_arrays/app/main.rb $gtk.ffi_misc.gtk_dlopen("ext") include FFI::CExt def tick args args.state.rotation ||= 0 update_scanner_texture # this calls into a C extension! # New/changed pixel arrays get uploaded to the GPU before we render # anything. At that point, they can be scaled, rotated, and otherwise # used like any other sprite. w = 100 h = 100 x = (1280 - w) / 2 y = (720 - h) / 2 args.outputs.background_color = [64, 0, 128] args.outputs.primitives << [x, y, w, h, :scanner, args.state.rotation].sprite args.state.rotation += 1 args.outputs.primitives << args.gtk.current_framerate_primitives end13 Path Finding Algorithms - Breadth First Search - main.rb
# ./samples/13_path_finding_algorithms/01_breadth_first_search/app/main.rb # A visual demonstration of a breadth first search # Inspired by https://www.redblobgames.com/pathfinding/a-star/introduction.html # An animation that can respond to user input in real time # A breadth first search expands in all directions one step at a time # The frontier is a queue of cells to be expanded from # The visited hash allows quick lookups of cells that have been expanded from # The walls hash allows quick lookup of whether a cell is a wall # The breadth first search starts by adding the red star to the frontier array # and marking it as visited # Each step a cell is removed from the front of the frontier array (queue) # Unless the neighbor is a wall or visited, it is added to the frontier array # The neighbor is then marked as visited # The frontier is blue # Visited cells are light brown # Walls are camo green # Even when walls are visited, they will maintain their wall color # The star can be moved by clicking and dragging # Walls can be added and removed by clicking and dragging class BreadthFirstSearch attr_gtk def initialize(args) # Variables to edit the size and appearance of the grid # Freely customizable to user's liking args.state.grid.width = 30 args.state.grid.height = 15 args.state.grid.cell_size = 40 # Stores which step of the animation is being rendered # When the user moves the star or messes with the walls, # the breadth first search is recalculated up to this step args.state.anim_steps = 0 # At some step the animation will end, # and further steps won't change anything (the whole grid will be explored) # This step is roughly the grid's width * height # When anim_steps equals max_steps no more calculations will occur # and the slider will be at the end args.state.max_steps = args.state.grid.width * args.state.grid.height # Whether the animation should play or not # If true, every tick moves anim_steps forward one # Pressing the stepwise animation buttons will pause the animation args.state.play = true # The location of the star and walls of the grid # They can be modified to have a different initial grid # Walls are stored in a hash for quick look up when doing the search args.state.star = [0, 0] args.state.walls = { [3, 3] => true, [3, 4] => true, [3, 5] => true, [3, 6] => true, [3, 7] => true, [3, 8] => true, [3, 9] => true, [3, 10] => true, [3, 11] => true, [4, 3] => true, [4, 4] => true, [4, 5] => true, [4, 6] => true, [4, 7] => true, [4, 8] => true, [4, 9] => true, [4, 10] => true, [4, 11] => true, [13, 0] => true, [13, 1] => true, [13, 2] => true, [13, 3] => true, [13, 4] => true, [13, 5] => true, [13, 6] => true, [13, 7] => true, [13, 8] => true, [13, 9] => true, [13, 10] => true, [14, 0] => true, [14, 1] => true, [14, 2] => true, [14, 3] => true, [14, 4] => true, [14, 5] => true, [14, 6] => true, [14, 7] => true, [14, 8] => true, [14, 9] => true, [14, 10] => true, [21, 8] => true, [21, 9] => true, [21, 10] => true, [21, 11] => true, [21, 12] => true, [21, 13] => true, [21, 14] => true, [22, 8] => true, [22, 9] => true, [22, 10] => true, [22, 11] => true, [22, 12] => true, [22, 13] => true, [22, 14] => true, [23, 8] => true, [23, 9] => true, [24, 8] => true, [24, 9] => true, [25, 8] => true, [25, 9] => true, } # Variables that are used by the breadth first search # Storing cells that the search has visited, prevents unnecessary steps # Expanding the frontier of the search in order makes the search expand # from the center outward args.state.visited = {} args.state.frontier = [] # What the user is currently editing on the grid # Possible values are: :none, :slider, :star, :remove_wall, :add_wall # We store this value, because we want to remember the value even when # the user's cursor is no longer over what they're interacting with, but # they are still clicking down on the mouse. args.state.click_and_drag = :none # Store the rects of the buttons that control the animation # They are here for user customization # Editing these might require recentering the text inside them # Those values can be found in the render_button methods args.state.buttons.left = [450, 600, 50, 50] args.state.buttons.center = [500, 600, 200, 50] args.state.buttons.right = [700, 600, 50, 50] # The variables below are related to the slider # They allow the user to customize them # They also give a central location for the render and input methods to get # information from # x & y are the coordinates of the leftmost part of the slider line args.state.slider.x = 400 args.state.slider.y = 675 # This is the width of the line args.state.slider.w = 360 # This is the offset for the circle # Allows the center of the circle to be on the line, # as opposed to the upper right corner args.state.slider.offset = 20 # This is the spacing between each of the notches on the slider # Notches are places where the circle can rest on the slider line # There needs to be a notch for each step before the maximum number of steps args.state.slider.spacing = args.state.slider.w.to_f / args.state.max_steps.to_f end # This method is called every frame/tick # Every tick, the current state of the search is rendered on the screen, # User input is processed, and # The next step in the search is calculated def tick render input # If animation is playing, and max steps have not been reached # Move the search a step forward if state.play && state.anim_steps < state.max_steps # Variable that tells the program what step to recalculate up to state.anim_steps += 1 calc end end # Draws everything onto the screen def render render_buttons render_slider render_background render_visited render_frontier render_walls render_star end # The methods below subdivide the task of drawing everything to the screen # Draws the buttons that control the animation step and state def render_buttons render_left_button render_center_button render_right_button end # Draws the button which steps the search backward # Shows the user where to click to move the search backward def render_left_button # Draws the gray button, and a black border # The border separates the buttons visually outputs.solids << [buttons.left, gray] outputs.borders << [buttons.left, black] # Renders an explanatory label in the center of the button # Explains to the user what the button does # If the button size is changed, the label might need to be edited as well # to keep the label in the center of the button label_x = buttons.left.x + 20 label_y = buttons.left.y + 35 outputs.labels << [label_x, label_y, "<"] end def render_center_button # Draws the gray button, and a black border # The border separates the buttons visually outputs.solids << [buttons.center, gray] outputs.borders << [buttons.center, black] # Renders an explanatory label in the center of the button # Explains to the user what the button does # If the button size is changed, the label might need to be edited as well # to keep the label in the center of the button label_x = buttons.center.x + 37 label_y = buttons.center.y + 35 label_text = state.play ? "Pause Animation" : "Play Animation" outputs.labels << [label_x, label_y, label_text] end def render_right_button # Draws the gray button, and a black border # The border separates the buttons visually outputs.solids << [buttons.right, gray] outputs.borders << [buttons.right, black] # Renders an explanatory label in the center of the button # Explains to the user what the button does label_x = buttons.right.x + 20 label_y = buttons.right.y + 35 outputs.labels << [label_x, label_y, ">"] end # Draws the slider so the user can move it and see the progress of the search def render_slider # Using primitives hides the line under the white circle of the slider # Draws the line outputs.primitives << [slider.x, slider.y, slider.x + slider.w, slider.y].line # The circle needs to be offset so that the center of the circle # overlaps the line instead of the upper right corner of the circle # The circle's x value is also moved based on the current seach step circle_x = (slider.x - slider.offset) + (state.anim_steps * slider.spacing) circle_y = (slider.y - slider.offset) circle_rect = [circle_x, circle_y, 37, 37] outputs.primitives << [circle_rect, 'circle-white.png'].sprite end # Draws what the grid looks like with nothing on it def render_background render_unvisited render_grid_lines end # Draws a rectangle the size of the entire grid to represent unvisited cells def render_unvisited outputs.solids << [scale_up([0, 0, grid.width, grid.height]), unvisited_color] end # Draws grid lines to show the division of the grid into cells def render_grid_lines for x in 0..grid.width outputs.lines << vertical_line(x) end for y in 0..grid.height outputs.lines << horizontal_line(y) end end # Easy way to draw vertical lines given an index def vertical_line column scale_up([column, 0, column, grid.height]) end # Easy way to draw horizontal lines given an index def horizontal_line row scale_up([0, row, grid.width, row]) end # Draws the area that is going to be searched from # The frontier is the most outward parts of the search def render_frontier outputs.solids << state.frontier.map do |cell| [scale_up(cell), frontier_color] end end # Draws the walls def render_walls outputs.solids << state.walls.map do |wall| [scale_up(wall), wall_color] end end # Renders cells that have been searched in the appropriate color def render_visited outputs.solids << state.visited.map do |cell| [scale_up(cell), visited_color] end end # Renders the star def render_star outputs.sprites << [scale_up(state.star), 'star.png'] end # In code, the cells are represented as 1x1 rectangles # When drawn, the cells are larger than 1x1 rectangles # This method is used to scale up cells, and lines # Objects are scaled up according to the grid.cell_size variable # This allows for easy customization of the visual scale of the grid def scale_up(cell) # Prevents the original value of cell from being edited cell = cell.clone # If cell is just an x and y coordinate if cell.size == 2 # Add a width and height of 1 cell << 1 cell << 1 end # Scale all the values up cell.map! { |value| value * grid.cell_size } # Returns the scaled up cell cell end # This method processes user input every tick # This method allows the user to use the buttons, slider, and edit the grid # There are 2 types of input: # Button Input # Click and Drag Input # # Button Input is used for the backward step and forward step buttons # Input is detected by mouse up within the bounds of the rect # # Click and Drag Input is used for moving the star, adding walls, # removing walls, and the slider # # When the mouse is down on the star, the click_and_drag variable is set to :star # While click_and_drag equals :star, the cursor's position is used to calculate the # appropriate drag behavior # # When the mouse goes up click_and_drag is set to :none # # A variable has to be used because the star has to continue being edited even # when the cursor is no longer over the star # # Similar things occur for the other Click and Drag inputs def input # Checks whether any of the buttons are being clicked input_buttons # The detection and processing of click and drag inputs are separate # The program has to remember that the user is dragging an object # even when the mouse is no longer over that object detect_click_and_drag process_click_and_drag end # Detects and Process input for each button def input_buttons input_left_button input_center_button input_next_step_button end # Checks if the previous step button is clicked # If it is, it pauses the animation and moves the search one step backward def input_left_button if left_button_clicked? state.play = false state.anim_steps -= 1 recalculate end end # Controls the play/pause button # Inverses whether the animation is playing or not when clicked def input_center_button if center_button_clicked? or inputs.keyboard.key_down.space state.play = !state.play end end # Checks if the next step button is clicked # If it is, it pauses the animation and moves the search one step forward def input_next_step_button if right_button_clicked? state.play = false state.anim_steps += 1 calc end end # Determines what the user is editing and stores the value # Storing the value allows the user to continue the same edit as long as the # mouse left click is held def detect_click_and_drag if inputs.mouse.up state.click_and_drag = :none elsif star_clicked? state.click_and_drag = :star elsif wall_clicked? state.click_and_drag = :remove_wall elsif grid_clicked? state.click_and_drag = :add_wall elsif slider_clicked? state.click_and_drag = :slider end end # Processes click and drag based on what the user is currently dragging def process_click_and_drag if state.click_and_drag == :star input_star elsif state.click_and_drag == :remove_wall input_remove_wall elsif state.click_and_drag == :add_wall input_add_wall elsif state.click_and_drag == :slider input_slider end end # Moves the star to the grid closest to the mouse # Only recalculates the search if the star changes position # Called whenever the user is editing the star (puts mouse down on star) def input_star old_star = state.star.clone state.star = cell_closest_to_mouse unless old_star == state.star recalculate end end # Removes walls that are under the cursor def input_remove_wall # The mouse needs to be inside the grid, because we only want to remove walls # the cursor is directly over # Recalculations should only occur when a wall is actually deleted if mouse_inside_grid? if state.walls.has_key?(cell_closest_to_mouse) state.walls.delete(cell_closest_to_mouse) recalculate end end end # Adds walls at cells under the cursor def input_add_wall if mouse_inside_grid? unless state.walls.has_key?(cell_closest_to_mouse) state.walls[cell_closest_to_mouse] = true recalculate end end end # This method is called when the user is editing the slider # It pauses the animation and moves the white circle to the closest integer point # on the slider # Changes the step of the search to be animated def input_slider state.play = false mouse_x = inputs.mouse.point.x # Bounds the mouse_x to the closest x value on the slider line mouse_x = slider.x if mouse_x < slider.x mouse_x = slider.x + slider.w if mouse_x > slider.x + slider.w # Sets the current search step to the one represented by the mouse x value # The slider's circle moves due to the render_slider method using anim_steps state.anim_steps = ((mouse_x - slider.x) / slider.spacing).to_i recalculate end # Whenever the user edits the grid, # The search has to be recalculated upto the current step # with the current grid as the initial state of the grid def recalculate # Resets the search state.frontier = [] state.visited = {} # Moves the animation forward one step at a time state.anim_steps.times { calc } end # This method moves the search forward one step # When the animation is playing it is called every tick # And called whenever the current step of the animation needs to be recalculated # Moves the search forward one step # Parameter called_from_tick is true if it is called from the tick method # It is false when the search is being recalculated after user editing the grid def calc # The setup to the search # Runs once when the there is no frontier or visited cells if state.frontier.empty? && state.visited.empty? state.frontier << state.star state.visited[state.star] = true end # A step in the search unless state.frontier.empty? # Takes the next frontier cell new_frontier = state.frontier.shift # For each of its neighbors adjacent_neighbors(new_frontier).each do |neighbor| # That have not been visited and are not walls unless state.visited.has_key?(neighbor) || state.walls.has_key?(neighbor) # Add them to the frontier and mark them as visited state.frontier << neighbor state.visited[neighbor] = true end end end end # Returns a list of adjacent cells # Used to determine what the next cells to be added to the frontier are def adjacent_neighbors(cell) neighbors = [] neighbors << [cell.x, cell.y + 1] unless cell.y == grid.height - 1 neighbors << [cell.x + 1, cell.y] unless cell.x == grid.width - 1 neighbors << [cell.x, cell.y - 1] unless cell.y == 0 neighbors << [cell.x - 1, cell.y] unless cell.x == 0 neighbors end # When the user grabs the star and puts their cursor to the far right # and moves up and down, the star is supposed to move along the grid as well # Finding the cell closest to the mouse helps with this def cell_closest_to_mouse # Closest cell to the mouse x = (inputs.mouse.point.x / grid.cell_size).to_i y = (inputs.mouse.point.y / grid.cell_size).to_i # Bound x and y to the grid x = grid.width - 1 if x > grid.width - 1 y = grid.height - 1 if y > grid.height - 1 # Return closest cell [x, y] end # These methods detect when the buttons are clicked def left_button_clicked? inputs.mouse.up && inputs.mouse.point.inside_rect?(buttons.left) end def center_button_clicked? inputs.mouse.up && inputs.mouse.point.inside_rect?(buttons.center) end def right_button_clicked? inputs.mouse.up && inputs.mouse.point.inside_rect?(buttons.right) end # Signal that the user is going to be moving the slider # Is the mouse down on the circle of the slider? def slider_clicked? circle_x = (slider.x - slider.offset) + (state.anim_steps * slider.spacing) circle_y = (slider.y - slider.offset) circle_rect = [circle_x, circle_y, 37, 37] inputs.mouse.down && inputs.mouse.point.inside_rect?(circle_rect) end # Signal that the user is going to be moving the star def star_clicked? inputs.mouse.down && inputs.mouse.point.inside_rect?(scale_up(state.star)) end # Signal that the user is going to be removing walls def wall_clicked? inputs.mouse.down && mouse_inside_a_wall? end # Signal that the user is going to be adding walls def grid_clicked? inputs.mouse.down && mouse_inside_grid? end # Returns whether the mouse is inside of a wall # Part of the condition that checks whether the user is removing a wall def mouse_inside_a_wall? state.walls.each_key do | wall | return true if inputs.mouse.point.inside_rect?(scale_up(wall)) end false end # Returns whether the mouse is inside of a grid # Part of the condition that checks whether the user is adding a wall def mouse_inside_grid? inputs.mouse.point.inside_rect?(scale_up([0, 0, grid.width, grid.height])) end # These methods provide handy aliases to colors # Light brown def unvisited_color [221, 212, 213] end # Black def grid_line_color [255, 255, 255] end # Dark Brown def visited_color [204, 191, 179] end # Blue def frontier_color [103, 136, 204] end # Camo Green def wall_color [134, 134, 120] end # Button Background def gray [190, 190, 190] end # Button Outline def black [0, 0, 0] end # These methods make the code more concise def grid state.grid end def buttons state.buttons end def slider state.slider end end # Method that is called by DragonRuby periodically # Used for updating animations and calculations def tick args # Pressing r will reset the application if args.inputs.keyboard.key_down.r args.gtk.reset reset return end # Every tick, new args are passed, and the Breadth First Search tick is called $breadth_first_search ||= BreadthFirstSearch.new(args) $breadth_first_search.args = args $breadth_first_search.tick end def reset $breadth_first_search = nil end13 Path Finding Algorithms - Detailed Breadth First Search - main.rb
# ./samples/13_path_finding_algorithms/02_detailed_breadth_first_search/app/main.rb # A visual demonstration of a breadth first search # Inspired by https://www.redblobgames.com/pathfinding/a-star/introduction.html # An animation that can respond to user input in real time # A breadth first search expands in all directions one step at a time # The frontier is a queue of cells to be expanded from # The visited hash allows quick lookups of cells that have been expanded from # The walls hash allows quick lookup of whether a cell is a wall # The breadth first search starts by adding the red star to the frontier array # and marking it as visited # Each step a cell is removed from the front of the frontier array (queue) # Unless the neighbor is a wall or visited, it is added to the frontier array # The neighbor is then marked as visited # The frontier is blue # Visited cells are light brown # Walls are camo green # Even when walls are visited, they will maintain their wall color # This search numbers the order in which new cells are explored # The next cell from where the search will continue is highlighted yellow # And the cells that will be considered for expansion are in semi-transparent green # The star can be moved by clicking and dragging # Walls can be added and removed by clicking and dragging class DetailedBreadthFirstSearch attr_gtk def initialize(args) # Variables to edit the size and appearance of the grid # Freely customizable to user's liking args.state.grid.width = 9 args.state.grid.height = 4 args.state.grid.cell_size = 90 # Stores which step of the animation is being rendered # When the user moves the star or messes with the walls, # the breadth first search is recalculated up to this step args.state.anim_steps = 0 # At some step the animation will end, # and further steps won't change anything (the whole grid will be explored) # This step is roughly the grid's width * height # When anim_steps equals max_steps no more calculations will occur # and the slider will be at the end args.state.max_steps = args.state.grid.width * args.state.grid.height # The location of the star and walls of the grid # They can be modified to have a different initial grid # Walls are stored in a hash for quick look up when doing the search args.state.star = [3, 2] args.state.walls = {} # Variables that are used by the breadth first search # Storing cells that the search has visited, prevents unnecessary steps # Expanding the frontier of the search in order makes the search expand # from the center outward args.state.visited = {} args.state.frontier = [] args.state.cell_numbers = [] # What the user is currently editing on the grid # Possible values are: :none, :slider, :star, :remove_wall, :add_wall # We store this value, because we want to remember the value even when # the user's cursor is no longer over what they're interacting with, but # they are still clicking down on the mouse. args.state.click_and_drag = :none # The x, y, w, h values for the buttons # Allow easy movement of the buttons location # A centralized location to get values to detect input and draw the buttons # Editing these values might mean needing to edit the label offsets # which can be found in the appropriate render button methods args.state.buttons.left = [450, 600, 160, 50] args.state.buttons.right = [610, 600, 160, 50] # The variables below are related to the slider # They allow the user to customize them # They also give a central location for the render and input methods to get # information from # x & y are the coordinates of the leftmost part of the slider line args.state.slider.x = 400 args.state.slider.y = 675 # This is the width of the line args.state.slider.w = 360 # This is the offset for the circle # Allows the center of the circle to be on the line, # as opposed to the upper right corner args.state.slider.offset = 20 # This is the spacing between each of the notches on the slider # Notches are places where the circle can rest on the slider line # There needs to be a notch for each step before the maximum number of steps args.state.slider.spacing = args.state.slider.w.to_f / args.state.max_steps.to_f end # This method is called every frame/tick # Every tick, the current state of the search is rendered on the screen, # User input is processed, and def tick render input end # This method is called from tick and renders everything every tick def render render_buttons render_slider render_background render_visited render_frontier render_walls render_star render_highlights render_cell_numbers end # The methods below subdivide the task of drawing everything to the screen # Draws the buttons that move the search backward or forward # These buttons are rendered so the user knows where to click to move the search def render_buttons render_left_button render_right_button end # Renders the button which steps the search backward # Shows the user where to click to move the search backward def render_left_button # Draws the gray button, and a black border # The border separates the buttons visually outputs.solids << [buttons.left, gray] outputs.borders << [buttons.left, black] # Renders an explanatory label in the center of the button # Explains to the user what the button does label_x = buttons.left.x + 05 label_y = buttons.left.y + 35 outputs.labels << [label_x, label_y, "< Step backward"] end # Renders the button which steps the search forward # Shows the user where to click to move the search forward def render_right_button # Draws the gray button, and a black border # The border separates the buttons visually outputs.solids << [buttons.right, gray] outputs.borders << [buttons.right, black] # Renders an explanatory label in the center of the button # Explains to the user what the button does label_x = buttons.right.x + 10 label_y = buttons.right.y + 35 outputs.labels << [label_x, label_y, "Step forward >"] end # Draws the slider so the user can move it and see the progress of the search def render_slider # Using primitives hides the line under the white circle of the slider # Draws the line outputs.primitives << [slider.x, slider.y, slider.x + slider.w, slider.y].line # The circle needs to be offset so that the center of the circle # overlaps the line instead of the upper right corner of the circle # The circle's x value is also moved based on the current seach step circle_x = (slider.x - slider.offset) + (state.anim_steps * slider.spacing) circle_y = (slider.y - slider.offset) circle_rect = [circle_x, circle_y, 37, 37] outputs.primitives << [circle_rect, 'circle-white.png'].sprite end # Draws what the grid looks like with nothing on it # Which is a bunch of unvisited cells # Drawn first so other things can draw on top of it def render_background render_unvisited # The grid lines make the cells appear separate render_grid_lines end # Draws a rectangle the size of the entire grid to represent unvisited cells # Unvisited cells are the default cell def render_unvisited background = [0, 0, grid.width, grid.height] outputs.solids << [scale_up(background), unvisited_color] end # Draws grid lines to show the division of the grid into cells def render_grid_lines for x in 0..grid.width outputs.lines << [scale_up(vertical_line(x)), grid_line_color] end for y in 0..grid.height outputs.lines << [scale_up(horizontal_line(y)), grid_line_color] end end # Easy way to get a vertical line given an index def vertical_line column [column, 0, column, grid.height] end # Easy way to get a horizontal line given an index def horizontal_line row [0, row, grid.width, row] end # Draws the area that is going to be searched from # The frontier is the most outward parts of the search def render_frontier state.frontier.each do |cell| outputs.solids << [scale_up(cell), frontier_color] end end # Draws the walls def render_walls state.walls.each_key do |wall| outputs.solids << [scale_up(wall), wall_color] end end # Renders cells that have been searched in the appropriate color def render_visited state.visited.each_key do |cell| outputs.solids << [scale_up(cell), visited_color] end end # Renders the star def render_star outputs.sprites << [scale_up(state.star), 'star.png'] end # Cells have a number rendered in them based on when they were explored # This is based off of their index in the cell_numbers array # Cells are added to this array the same time they are added to the frontier array def render_cell_numbers state.cell_numbers.each_with_index do |cell, index| # Math that approx centers the number in the cell label_x = (cell.x * grid.cell_size) + grid.cell_size / 2 - 5 label_y = (cell.y * grid.cell_size) + (grid.cell_size / 2) + 5 outputs.labels << [label_x, label_y, (index + 1).to_s] end end # The next frontier to be expanded is highlighted yellow # Its adjacent non-wall neighbors have their border highlighted green # This is to show the user how the search expands def render_highlights return if state.frontier.empty? # Highlight the next frontier to be expanded yellow next_frontier = state.frontier[0] outputs.solids << [scale_up(next_frontier), highlighter_yellow] # Neighbors have a semi-transparent green layer over them # Unless the neighbor is a wall adjacent_neighbors(next_frontier).each do |neighbor| unless state.walls.has_key?(neighbor) outputs.solids << [scale_up(neighbor), highlighter_green, 70] end end end # Cell Size is used when rendering to allow the grid to be scaled up or down # Cells in the frontier array and visited hash and walls hash are stored as x & y # Scaling up cells and lines when rendering allows omitting of width and height def scale_up(cell) # Prevents the original value of cell from being edited cell = cell.clone # If cell is just an x and y coordinate if cell.size == 2 # Add a width and height of 1 cell << 1 cell << 1 end # Scale all the values up cell.map! { |value| value * grid.cell_size } # Returns the scaled up cell cell end # This method processes user input every tick # This method allows the user to use the buttons, slider, and edit the grid # There are 2 types of input: # Button Input # Click and Drag Input # # Button Input is used for the backward step and forward step buttons # Input is detected by mouse up within the bounds of the rect # # Click and Drag Input is used for moving the star, adding walls, # removing walls, and the slider # # When the mouse is down on the star, the click_and_drag variable is set to :star # While click_and_drag equals :star, the cursor's position is used to calculate the # appropriate drag behavior # # When the mouse goes up click_and_drag is set to :none # # A variable has to be used because the star has to continue being edited even # when the cursor is no longer over the star # # Similar things occur for the other Click and Drag inputs def input # Processes inputs for the buttons input_buttons # Detects which if any click and drag input is occurring detect_click_and_drag # Does the appropriate click and drag input based on the click_and_drag variable process_click_and_drag end # Detects and Process input for each button def input_buttons input_left_button input_right_button end # Checks if the previous step button is clicked # If it is, it pauses the animation and moves the search one step backward def input_left_button if left_button_clicked? unless state.anim_steps == 0 state.anim_steps -= 1 recalculate end end end # Checks if the next step button is clicked # If it is, it pauses the animation and moves the search one step forward def input_right_button if right_button_clicked? unless state.anim_steps == state.max_steps state.anim_steps += 1 # Although normally recalculate would be called here # because the right button only moves the search forward # We can just do that calc end end end # Whenever the user edits the grid, # The search has to be recalculated upto the current step def recalculate # Resets the search state.frontier = [] state.visited = {} state.cell_numbers = [] # Moves the animation forward one step at a time state.anim_steps.times { calc } end # Determines what the user is clicking and planning on dragging # Click and drag input is initiated by a click on the appropriate item # and ended by mouse up # Storing the value allows the user to continue the same edit as long as the # mouse left click is held def detect_click_and_drag if inputs.mouse.up state.click_and_drag = :none elsif star_clicked? state.click_and_drag = :star elsif wall_clicked? state.click_and_drag = :remove_wall elsif grid_clicked? state.click_and_drag = :add_wall elsif slider_clicked? state.click_and_drag = :slider end end # Processes input based on what the user is currently dragging def process_click_and_drag if state.click_and_drag == :slider input_slider elsif state.click_and_drag == :star input_star elsif state.click_and_drag == :remove_wall input_remove_wall elsif state.click_and_drag == :add_wall input_add_wall end end # This method is called when the user is dragging the slider # It moves the current animation step to the point represented by the slider def input_slider mouse_x = inputs.mouse.point.x # Bounds the mouse_x to the closest x value on the slider line mouse_x = slider.x if mouse_x < slider.x mouse_x = slider.x + slider.w if mouse_x > slider.x + slider.w # Sets the current search step to the one represented by the mouse x value # The slider's circle moves due to the render_slider method using anim_steps state.anim_steps = ((mouse_x - slider.x) / slider.spacing).to_i recalculate end # Moves the star to the grid closest to the mouse # Only recalculates the search if the star changes position # Called whenever the user is dragging the star def input_star old_star = state.star.clone state.star = cell_closest_to_mouse unless old_star == state.star recalculate end end # Removes walls that are under the cursor def input_remove_wall # The mouse needs to be inside the grid, because we only want to remove walls # the cursor is directly over # Recalculations should only occur when a wall is actually deleted if mouse_inside_grid? if state.walls.has_key?(cell_closest_to_mouse) state.walls.delete(cell_closest_to_mouse) recalculate end end end # Adds walls at cells under the cursor def input_add_wall # Adds a wall to the hash # We can use the grid closest to mouse, because the cursor is inside the grid if mouse_inside_grid? unless state.walls.has_key?(cell_closest_to_mouse) state.walls[cell_closest_to_mouse] = true recalculate end end end # This method moves the search forward one step # When the animation is playing it is called every tick # And called whenever the current step of the animation needs to be recalculated # Moves the search forward one step # Parameter called_from_tick is true if it is called from the tick method # It is false when the search is being recalculated after user editing the grid def calc # The setup to the search # Runs once when the there is no frontier or visited cells if state.frontier.empty? && state.visited.empty? state.frontier << state.star state.visited[state.star] = true end # A step in the search unless state.frontier.empty? # Takes the next frontier cell new_frontier = state.frontier.shift # For each of its neighbors adjacent_neighbors(new_frontier).each do |neighbor| # That have not been visited and are not walls unless state.visited.has_key?(neighbor) || state.walls.has_key?(neighbor) # Add them to the frontier and mark them as visited state.frontier << neighbor state.visited[neighbor] = true # Also assign them a frontier number state.cell_numbers << neighbor end end end end # Returns a list of adjacent cells # Used to determine what the next cells to be added to the frontier are def adjacent_neighbors cell neighbors = [] neighbors << [cell.x, cell.y + 1] unless cell.y == grid.height - 1 neighbors << [cell.x + 1, cell.y] unless cell.x == grid.width - 1 neighbors << [cell.x, cell.y - 1] unless cell.y == 0 neighbors << [cell.x - 1, cell.y] unless cell.x == 0 neighbors end # When the user grabs the star and puts their cursor to the far right # and moves up and down, the star is supposed to move along the grid as well # Finding the grid closest to the mouse helps with this def cell_closest_to_mouse x = (inputs.mouse.point.x / grid.cell_size).to_i y = (inputs.mouse.point.y / grid.cell_size).to_i x = grid.width - 1 if x > grid.width - 1 y = grid.height - 1 if y > grid.height - 1 [x, y] end # These methods detect when the buttons are clicked def left_button_clicked? (inputs.mouse.up && inputs.mouse.point.inside_rect?(buttons.left)) || inputs.keyboard.key_up.left end def right_button_clicked? (inputs.mouse.up && inputs.mouse.point.inside_rect?(buttons.right)) || inputs.keyboard.key_up.right end # Signal that the user is going to be moving the slider def slider_clicked? circle_x = (slider.x - slider.offset) + (state.anim_steps * slider.spacing) circle_y = (slider.y - slider.offset) circle_rect = [circle_x, circle_y, 37, 37] inputs.mouse.down && inputs.mouse.point.inside_rect?(circle_rect) end # Signal that the user is going to be moving the star def star_clicked? inputs.mouse.down && inputs.mouse.point.inside_rect?(scale_up(state.star)) end # Signal that the user is going to be removing walls def wall_clicked? inputs.mouse.down && mouse_inside_a_wall? end # Signal that the user is going to be adding walls def grid_clicked? inputs.mouse.down && mouse_inside_grid? end # Returns whether the mouse is inside of a wall # Part of the condition that checks whether the user is removing a wall def mouse_inside_a_wall? state.walls.each_key do | wall | return true if inputs.mouse.point.inside_rect?(scale_up(wall)) end false end # Returns whether the mouse is inside of a grid # Part of the condition that checks whether the user is adding a wall def mouse_inside_grid? inputs.mouse.point.inside_rect?(scale_up([0, 0, grid.width, grid.height])) end # These methods provide handy aliases to colors # Light brown def unvisited_color [221, 212, 213] end # Black def grid_line_color [255, 255, 255] end # Dark Brown def visited_color [204, 191, 179] end # Blue def frontier_color [103, 136, 204] end # Camo Green def wall_color [134, 134, 120] end # Next frontier to be expanded def highlighter_yellow [214, 231, 125] end # The neighbors of the next frontier to be expanded def highlighter_green [65, 191, 127] end # Button background def gray [190, 190, 190] end # Button outline def black [0, 0, 0] end # These methods make the code more concise def grid state.grid end def buttons state.buttons end def slider state.slider end end def tick args # Pressing r resets the program if args.inputs.keyboard.key_down.r args.gtk.reset reset return end $detailed_breadth_first_search ||= DetailedBreadthFirstSearch.new(args) $detailed_breadth_first_search.args = args $detailed_breadth_first_search.tick end def reset $detailed_breadth_first_search = nil end13 Path Finding Algorithms - Breadcrumbs - main.rb
# ./samples/13_path_finding_algorithms/03_breadcrumbs/app/main.rb class Breadcrumbs attr_gtk # This method is called every frame/tick # Every tick, the current state of the search is rendered on the screen, # User input is processed, and # The next step in the search is calculated def tick defaults # If the grid has not been searched if search.came_from.empty? calc # Calc Path end render input end def defaults # Variables to edit the size and appearance of the grid # Freely customizable to user's liking grid.width ||= 30 grid.height ||= 15 grid.cell_size ||= 40 grid.rect ||= [0, 0, grid.width, grid.height] # The location of the star and walls of the grid # They can be modified to have a different initial grid # Walls are stored in a hash for quick look up when doing the search grid.star ||= [2, 8] grid.target ||= [10, 5] grid.walls ||= { [3, 3] => true, [3, 4] => true, [3, 5] => true, [3, 6] => true, [3, 7] => true, [3, 8] => true, [3, 9] => true, [3, 10] => true, [3, 11] => true, [4, 3] => true, [4, 4] => true, [4, 5] => true, [4, 6] => true, [4, 7] => true, [4, 8] => true, [4, 9] => true, [4, 10] => true, [4, 11] => true, [13, 0] => true, [13, 1] => true, [13, 2] => true, [13, 3] => true, [13, 4] => true, [13, 5] => true, [13, 6] => true, [13, 7] => true, [13, 8] => true, [13, 9] => true, [13, 10] => true, [14, 0] => true, [14, 1] => true, [14, 2] => true, [14, 3] => true, [14, 4] => true, [14, 5] => true, [14, 6] => true, [14, 7] => true, [14, 8] => true, [14, 9] => true, [14, 10] => true, [21, 8] => true, [21, 9] => true, [21, 10] => true, [21, 11] => true, [21, 12] => true, [21, 13] => true, [21, 14] => true, [22, 8] => true, [22, 9] => true, [22, 10] => true, [22, 11] => true, [22, 12] => true, [22, 13] => true, [22, 14] => true, [23, 8] => true, [23, 9] => true, [24, 8] => true, [24, 9] => true, [25, 8] => true, [25, 9] => true, } # Variables that are used by the breadth first search # Storing cells that the search has visited, prevents unnecessary steps # Expanding the frontier of the search in order makes the search expand # from the center outward # The cells from which the search is to expand search.frontier ||= [] # A hash of where each cell was expanded from # The key is a cell, and the value is the cell it came from search.came_from ||= {} # Cells that are part of the path from the target to the star search.path ||= {} # What the user is currently editing on the grid # We store this value, because we want to remember the value even when # the user's cursor is no longer over what they're interacting with, but # they are still clicking down on the mouse. state.current_input ||= :none end def calc # Setup the search to start from the star search.frontier << grid.star search.came_from[grid.star] = nil # Until there are no more cells to expand from until search.frontier.empty? # Takes the next frontier cell new_frontier = search.frontier.shift # For each of its neighbors adjacent_neighbors(new_frontier).each do |neighbor| # That have not been visited and are not walls unless search.came_from.has_key?(neighbor) || grid.walls.has_key?(neighbor) # Add them to the frontier and mark them as visited in the first grid # Unless the target has been visited # Add the neighbor to the frontier and remember which cell it came from search.frontier << neighbor search.came_from[neighbor] = new_frontier end end end end # Draws everything onto the screen def render render_background # render_heat_map render_walls # render_path # render_labels render_arrows render_star render_target unless grid.walls.has_key?(grid.target) render_trail end end def render_trail(current_cell=grid.target) return if current_cell == grid.star parent_cell = search.came_from[current_cell] if current_cell && parent_cell outputs.lines << [(current_cell.x + 0.5) * grid.cell_size, (current_cell.y + 0.5) * grid.cell_size, (parent_cell.x + 0.5) * grid.cell_size, (parent_cell.y + 0.5) * grid.cell_size, purple] end render_trail(parent_cell) end def render_arrows search.came_from.each do |child, parent| if parent && child arrow_cell = [(child.x + parent.x) / 2, (child.y + parent.y) / 2] if parent.x > child.x # If the parent cell is to the right of the child cell outputs.sprites << [scale_up(arrow_cell), 'arrow.png', 0] # Point the arrow to the right elsif parent.x < child.x # If the parent cell is to the right of the child cell outputs.sprites << [scale_up(arrow_cell), 'arrow.png', 180] # Point the arrow to the right elsif parent.y > child.y # If the parent cell is to the right of the child cell outputs.sprites << [scale_up(arrow_cell), 'arrow.png', 90] # Point the arrow to the right elsif parent.y < child.y # If the parent cell is to the right of the child cell outputs.sprites << [scale_up(arrow_cell), 'arrow.png', 270] # Point the arrow to the right end end end end # The methods below subdivide the task of drawing everything to the screen # Draws what the grid looks like with nothing on it def render_background render_unvisited render_grid_lines end # Draws both grids def render_unvisited outputs.solids << [scale_up(grid.rect), unvisited_color] end # Draws grid lines to show the division of the grid into cells def render_grid_lines for x in 0..grid.width outputs.lines << vertical_line(x) end for y in 0..grid.height outputs.lines << horizontal_line(y) end end # Easy way to draw vertical lines given an index def vertical_line column scale_up([column, 0, column, grid.height]) end # Easy way to draw horizontal lines given an index def horizontal_line row scale_up([0, row, grid.width, row]) end # Draws the walls on both grids def render_walls grid.walls.each_key do |wall| outputs.solids << [scale_up(wall), wall_color] end end # Renders the star on both grids def render_star outputs.sprites << [scale_up(grid.star), 'star.png'] end # Renders the target on both grids def render_target outputs.sprites << [scale_up(grid.target), 'target.png'] end # Labels the grids def render_labels outputs.labels << [200, 625, "Without early exit"] end # Renders the path based off of the search.path hash def render_path # If the star and target are disconnected there will only be one path # The path should not render in that case unless search.path.size == 1 search.path.each_key do | cell | # Renders path on both grids outputs.solids << [scale_up(cell), path_color] end end end # Calculates the path from the target to the star after the search is over # Relies on the came_from hash # Fills the search.path hash, which is later rendered on screen def calc_path endpoint = grid.target while endpoint search.path[endpoint] = true endpoint = search.came_from[endpoint] end end # In code, the cells are represented as 1x1 rectangles # When drawn, the cells are larger than 1x1 rectangles # This method is used to scale up cells, and lines # Objects are scaled up according to the grid.cell_size variable # This allows for easy customization of the visual scale of the grid def scale_up(cell) # Prevents the original value of cell from being edited cell = cell.clone # If cell is just an x and y coordinate if cell.size == 2 # Add a width and height of 1 cell << 1 cell << 1 end # Scale all the values up cell.map! { |value| value * grid.cell_size } # Returns the scaled up cell cell end # This method processes user input every tick # Any method with "1" is related to the first grid # Any method with "2" is related to the second grid def input # The program has to remember that the user is dragging an object # even when the mouse is no longer over that object # So detecting input and processing input is separate # detect_input # process_input if inputs.mouse.up state.current_input = :none elsif star_clicked? state.current_input = :star end if mouse_inside_grid? unless grid.target == cell_closest_to_mouse grid.target = cell_closest_to_mouse end if state.current_input == :star unless grid.star == cell_closest_to_mouse grid.star = cell_closest_to_mouse end end end end # Determines what the user is editing and stores the value # Storing the value allows the user to continue the same edit as long as the # mouse left click is held def detect_input # When the mouse is up, nothing is being edited if inputs.mouse.up state.current_input = :none # When the star in the no second grid is clicked elsif star_clicked? state.current_input = :star # When the target in the no second grid is clicked elsif target_clicked? state.current_input = :target # When a wall in the first grid is clicked elsif wall_clicked? state.current_input = :remove_wall # When the first grid is clicked elsif grid_clicked? state.current_input = :add_wall end end # Processes click and drag based on what the user is currently dragging def process_input if state.current_input == :star input_star elsif state.current_input == :target input_target elsif state.current_input == :remove_wall input_remove_wall elsif state.current_input == :add_wall input_add_wall end end # Moves the star to the cell closest to the mouse in the first grid # Only resets the search if the star changes position # Called whenever the user is editing the star (puts mouse down on star) def input_star old_star = grid.star.clone grid.star = cell_closest_to_mouse unless old_star == grid.star reset_search end end # Moves the target to the grid closest to the mouse in the first grid # Only reset_searchs the search if the target changes position # Called whenever the user is editing the target (puts mouse down on target) def input_target old_target = grid.target.clone grid.target = cell_closest_to_mouse unless old_target == grid.target reset_search end end # Removes walls in the first grid that are under the cursor def input_remove_wall # The mouse needs to be inside the grid, because we only want to remove walls # the cursor is directly over # Recalculations should only occur when a wall is actually deleted if mouse_inside_grid? if grid.walls.has_key?(cell_closest_to_mouse) grid.walls.delete(cell_closest_to_mouse) reset_search end end end # Adds a wall in the first grid in the cell the mouse is over def input_add_wall if mouse_inside_grid? unless grid.walls.has_key?(cell_closest_to_mouse) grid.walls[cell_closest_to_mouse] = true reset_search end end end # Whenever the user edits the grid, # The search has to be reset_searchd upto the current step # with the current grid as the initial state of the grid def reset_search # Reset_Searchs the search search.frontier = [] search.came_from = {} search.path = {} end # Returns a list of adjacent cells # Used to determine what the next cells to be added to the frontier are def adjacent_neighbors(cell) neighbors = [] # Gets all the valid neighbors into the array # From southern neighbor, clockwise neighbors << [cell.x, cell.y - 1] unless cell.y == 0 neighbors << [cell.x - 1, cell.y] unless cell.x == 0 neighbors << [cell.x, cell.y + 1] unless cell.y == grid.height - 1 neighbors << [cell.x + 1, cell.y] unless cell.x == grid.width - 1 # Sorts the neighbors so the rendered path is a zigzag path # Cells in a diagonal direction are given priority # Comment this line to see the difference neighbors = neighbors.sort_by { |neighbor_x, neighbor_y| proximity_to_star(neighbor_x, neighbor_y) } neighbors end # Finds the vertical and horizontal distance of a cell from the star # and returns the larger value # This method is used to have a zigzag pattern in the rendered path # A cell that is [5, 5] from the star, # is explored before over a cell that is [0, 7] away. # So, if possible, the search tries to go diagonal (zigzag) first def proximity_to_star(x, y) distance_x = (grid.star.x - x).abs distance_y = (grid.star.y - y).abs if distance_x > distance_y return distance_x else return distance_y end end # When the user grabs the star and puts their cursor to the far right # and moves up and down, the star is supposed to move along the grid as well # Finding the cell closest to the mouse helps with this def cell_closest_to_mouse # Closest cell to the mouse in the first grid x = (inputs.mouse.point.x / grid.cell_size).to_i y = (inputs.mouse.point.y / grid.cell_size).to_i # Bound x and y to the grid x = grid.width - 1 if x > grid.width - 1 y = grid.height - 1 if y > grid.height - 1 # Return closest cell [x, y] end # Signal that the user is going to be moving the star from the first grid def star_clicked? inputs.mouse.down && inputs.mouse.point.inside_rect?(scale_up(grid.star)) end # Signal that the user is going to be moving the target from the first grid def target_clicked? inputs.mouse.down && inputs.mouse.point.inside_rect?(scale_up(grid.target)) end # Signal that the user is going to be adding walls from the first grid def grid_clicked? inputs.mouse.down && mouse_inside_grid? end # Returns whether the mouse is inside of the first grid # Part of the condition that checks whether the user is adding a wall def mouse_inside_grid? inputs.mouse.point.inside_rect?(scale_up(grid.rect)) end # These methods provide handy aliases to colors # Light brown def unvisited_color [221, 212, 213] # [255, 255, 255] end # Camo Green def wall_color [134, 134, 120] end # Pastel White def path_color [231, 230, 228] end def red [255, 0, 0] end def purple [149, 64, 191] end # Makes code more concise def grid state.grid end def search state.search end end # Method that is called by DragonRuby periodically # Used for updating animations and calculations def tick args # Pressing r will reset the application if args.inputs.keyboard.key_down.r args.gtk.reset reset return end # Every tick, new args are passed, and the Breadth First Search tick is called $breadcrumbs ||= Breadcrumbs.new(args) $breadcrumbs.args = args $breadcrumbs.tick end def reset $breadcrumbs = nil end # # Representation of how far away visited cells are from the star # # Replaces the render_visited method # # Visually demonstrates the effectiveness of early exit for pathfinding # def render_heat_map # # THIS CODE NEEDS SOME FIXING DUE TO REFACTORING # search.came_from.each_key do | cell | # distance = (grid.star.x - visited_cell.x).abs + (state.star.y - visited_cell.y).abs # max_distance = grid.width + grid.height # alpha = 255.to_i * distance.to_i / max_distance.to_i # outputs.solids << [scale_up(visited_cell), red, alpha] # # outputs.solids << [early_exit_scale_up(visited_cell), red, alpha] # end # end13 Path Finding Algorithms - Early Exit - main.rb
# ./samples/13_path_finding_algorithms/04_early_exit/app/main.rb # Comparison of a breadth first search with and without early exit # Inspired by https://www.redblobgames.com/pathfinding/a-star/introduction.html # Demonstrates the exploration difference caused by early exit # Also demonstrates how breadth first search is used for path generation # The left grid is a breadth first search without early exit # The right grid is a breadth first search with early exit # The red squares represent how far the search expanded # The darker the red, the farther the search proceeded # Comparison of the heat map reveals how much searching can be saved by early exit # The white path shows path generation via breadth first search class EarlyExitBreadthFirstSearch attr_gtk # This method is called every frame/tick # Every tick, the current state of the search is rendered on the screen, # User input is processed, and # The next step in the search is calculated def tick defaults # If the grid has not been searched if state.visited.empty? # Complete the search state.max_steps.times { step } # And calculate the path calc_path end render input end def defaults # Variables to edit the size and appearance of the grid # Freely customizable to user's liking grid.width ||= 15 grid.height ||= 15 grid.cell_size ||= 40 grid.rect ||= [0, 0, grid.width, grid.height] # At some step the animation will end, # and further steps won't change anything (the whole grid.widthill be explored) # This step is roughly the grid's width * height # When anim_steps equals max_steps no more calculations will occur # and the slider will be at the end state.max_steps ||= args.state.grid.width * args.state.grid.height # The location of the star and walls of the grid # They can be modified to have a different initial grid # Walls are stored in a hash for quick look up when doing the search state.star ||= [2, 8] state.target ||= [10, 5] state.walls ||= {} # Variables that are used by the breadth first search # Storing cells that the search has visited, prevents unnecessary steps # Expanding the frontier of the search in order makes the search expand # from the center outward # Visited cells in the first grid state.visited ||= {} # Visited cells in the second grid state.early_exit_visited ||= {} # The cells from which the search is to expand state.frontier ||= [] # A hash of where each cell was expanded from # The key is a cell, and the value is the cell it came from state.came_from ||= {} # Cells that are part of the path from the target to the star state.path ||= {} # What the user is currently editing on the grid # We store this value, because we want to remember the value even when # the user's cursor is no longer over what they're interacting with, but # they are still clicking down on the mouse. state.current_input ||= :none end # Draws everything onto the screen def render render_background render_heat_map render_walls render_path render_star render_target render_labels end # The methods below subdivide the task of drawing everything to the screen # Draws what the grid looks like with nothing on it def render_background render_unvisited render_grid_lines end # Draws both grids def render_unvisited outputs.solids << [scale_up(grid.rect), unvisited_color] outputs.solids << [early_exit_scale_up(grid.rect), unvisited_color] end # Draws grid lines to show the division of the grid into cells def render_grid_lines for x in 0..grid.width outputs.lines << vertical_line(x) outputs.lines << early_exit_vertical_line(x) end for y in 0..grid.height outputs.lines << horizontal_line(y) outputs.lines << early_exit_horizontal_line(y) end end # Easy way to draw vertical lines given an index def vertical_line column scale_up([column, 0, column, grid.height]) end # Easy way to draw horizontal lines given an index def horizontal_line row scale_up([0, row, grid.width, row]) end # Easy way to draw vertical lines given an index def early_exit_vertical_line column scale_up([column + grid.width + 1, 0, column + grid.width + 1, grid.height]) end # Easy way to draw horizontal lines given an index def early_exit_horizontal_line row scale_up([grid.width + 1, row, grid.width + grid.width + 1, row]) end # Draws the walls on both grids def render_walls state.walls.each_key do |wall| outputs.solids << [scale_up(wall), wall_color] outputs.solids << [early_exit_scale_up(wall), wall_color] end end # Renders the star on both grids def render_star outputs.sprites << [scale_up(state.star), 'star.png'] outputs.sprites << [early_exit_scale_up(state.star), 'star.png'] end # Renders the target on both grids def render_target outputs.sprites << [scale_up(state.target), 'target.png'] outputs.sprites << [early_exit_scale_up(state.target), 'target.png'] end # Labels the grids def render_labels outputs.labels << [200, 625, "Without early exit"] outputs.labels << [875, 625, "With early exit"] end # Renders the path based off of the state.path hash def render_path # If the star and target are disconnected there will only be one path # The path should not render in that case unless state.path.size == 1 state.path.each_key do | cell | # Renders path on both grids outputs.solids << [scale_up(cell), path_color] outputs.solids << [early_exit_scale_up(cell), path_color] end end end # Calculates the path from the target to the star after the search is over # Relies on the came_from hash # Fills the state.path hash, which is later rendered on screen def calc_path endpoint = state.target while endpoint state.path[endpoint] = true endpoint = state.came_from[endpoint] end end # Representation of how far away visited cells are from the star # Replaces the render_visited method # Visually demonstrates the effectiveness of early exit for pathfinding def render_heat_map state.visited.each_key do | visited_cell | distance = (state.star.x - visited_cell.x).abs + (state.star.y - visited_cell.y).abs max_distance = grid.width + grid.height alpha = 255.to_i * distance.to_i / max_distance.to_i outputs.solids << [scale_up(visited_cell), red, alpha] # outputs.solids << [early_exit_scale_up(visited_cell), red, alpha] end state.early_exit_visited.each_key do | visited_cell | distance = (state.star.x - visited_cell.x).abs + (state.star.y - visited_cell.y).abs max_distance = grid.width + grid.height alpha = 255.to_i * distance.to_i / max_distance.to_i outputs.solids << [early_exit_scale_up(visited_cell), red, alpha] end end # Translates the given cell grid.width + 1 to the right and then scales up # Used to draw cells for the second grid # This method does not work for lines, # so separate methods exist for the grid lines def early_exit_scale_up(cell) cell_clone = cell.clone cell_clone.x += grid.width + 1 scale_up(cell_clone) end # In code, the cells are represented as 1x1 rectangles # When drawn, the cells are larger than 1x1 rectangles # This method is used to scale up cells, and lines # Objects are scaled up according to the grid.cell_size variable # This allows for easy customization of the visual scale of the grid def scale_up(cell) # Prevents the original value of cell from being edited cell = cell.clone # If cell is just an x and y coordinate if cell.size == 2 # Add a width and height of 1 cell << 1 cell << 1 end # Scale all the values up cell.map! { |value| value * grid.cell_size } # Returns the scaled up cell cell end # This method processes user input every tick # Any method with "1" is related to the first grid # Any method with "2" is related to the second grid def input # The program has to remember that the user is dragging an object # even when the mouse is no longer over that object # So detecting input and processing input is separate detect_input process_input end # Determines what the user is editing and stores the value # Storing the value allows the user to continue the same edit as long as the # mouse left click is held def detect_input # When the mouse is up, nothing is being edited if inputs.mouse.up state.current_input = :none # When the star in the no second grid is clicked elsif star_clicked? state.current_input = :star # When the star in the second grid is clicked elsif star2_clicked? state.current_input = :star2 # When the target in the no second grid is clicked elsif target_clicked? state.current_input = :target # When the target in the second grid is clicked elsif target2_clicked? state.current_input = :target2 # When a wall in the first grid is clicked elsif wall_clicked? state.current_input = :remove_wall # When a wall in the second grid is clicked elsif wall2_clicked? state.current_input = :remove_wall2 # When the first grid is clicked elsif grid_clicked? state.current_input = :add_wall # When the second grid is clicked elsif grid2_clicked? state.current_input = :add_wall2 end end # Processes click and drag based on what the user is currently dragging def process_input if state.current_input == :star input_star elsif state.current_input == :star2 input_star2 elsif state.current_input == :target input_target elsif state.current_input == :target2 input_target2 elsif state.current_input == :remove_wall input_remove_wall elsif state.current_input == :remove_wall2 input_remove_wall2 elsif state.current_input == :add_wall input_add_wall elsif state.current_input == :add_wall2 input_add_wall2 end end # Moves the star to the cell closest to the mouse in the first grid # Only resets the search if the star changes position # Called whenever the user is editing the star (puts mouse down on star) def input_star old_star = state.star.clone state.star = cell_closest_to_mouse unless old_star == state.star reset_search end end # Moves the star to the cell closest to the mouse in the second grid # Only resets the search if the star changes position # Called whenever the user is editing the star (puts mouse down on star) def input_star2 old_star = state.star.clone state.star = cell_closest_to_mouse2 unless old_star == state.star reset_search end end # Moves the target to the grid closest to the mouse in the first grid # Only reset_searchs the search if the target changes position # Called whenever the user is editing the target (puts mouse down on target) def input_target old_target = state.target.clone state.target = cell_closest_to_mouse unless old_target == state.target reset_search end end # Moves the target to the cell closest to the mouse in the second grid # Only reset_searchs the search if the target changes position # Called whenever the user is editing the target (puts mouse down on target) def input_target2 old_target = state.target.clone state.target = cell_closest_to_mouse2 unless old_target == state.target reset_search end end # Removes walls in the first grid that are under the cursor def input_remove_wall # The mouse needs to be inside the grid, because we only want to remove walls # the cursor is directly over # Recalculations should only occur when a wall is actually deleted if mouse_inside_grid? if state.walls.has_key?(cell_closest_to_mouse) state.walls.delete(cell_closest_to_mouse) reset_search end end end # Removes walls in the second grid that are under the cursor def input_remove_wall2 # The mouse needs to be inside the grid, because we only want to remove walls # the cursor is directly over # Recalculations should only occur when a wall is actually deleted if mouse_inside_grid2? if state.walls.has_key?(cell_closest_to_mouse2) state.walls.delete(cell_closest_to_mouse2) reset_search end end end # Adds a wall in the first grid in the cell the mouse is over def input_add_wall if mouse_inside_grid? unless state.walls.has_key?(cell_closest_to_mouse) state.walls[cell_closest_to_mouse] = true reset_search end end end # Adds a wall in the second grid in the cell the mouse is over def input_add_wall2 if mouse_inside_grid2? unless state.walls.has_key?(cell_closest_to_mouse2) state.walls[cell_closest_to_mouse2] = true reset_search end end end # Whenever the user edits the grid, # The search has to be reset_searchd upto the current step # with the current grid as the initial state of the grid def reset_search # Reset_Searchs the search state.frontier = [] state.visited = {} state.early_exit_visited = {} state.came_from = {} state.path = {} end # Moves the search forward one step def step # The setup to the search # Runs once when there are no visited cells if state.visited.empty? state.visited[state.star] = true state.early_exit_visited[state.star] = true state.frontier << state.star state.came_from[state.star] = nil end # A step in the search unless state.frontier.empty? # Takes the next frontier cell new_frontier = state.frontier.shift # For each of its neighbors adjacent_neighbors(new_frontier).each do |neighbor| # That have not been visited and are not walls unless state.visited.has_key?(neighbor) || state.walls.has_key?(neighbor) # Add them to the frontier and mark them as visited in the first grid state.visited[neighbor] = true # Unless the target has been visited unless state.visited.has_key?(state.target) # Mark the neighbor as visited in the second grid as well state.early_exit_visited[neighbor] = true end # Add the neighbor to the frontier and remember which cell it came from state.frontier << neighbor state.came_from[neighbor] = new_frontier end end end end # Returns a list of adjacent cells # Used to determine what the next cells to be added to the frontier are def adjacent_neighbors(cell) neighbors = [] # Gets all the valid neighbors into the array # From southern neighbor, clockwise neighbors << [cell.x, cell.y - 1] unless cell.y == 0 neighbors << [cell.x - 1, cell.y] unless cell.x == 0 neighbors << [cell.x, cell.y + 1] unless cell.y == grid.height - 1 neighbors << [cell.x + 1, cell.y] unless cell.x == grid.width - 1 # Sorts the neighbors so the rendered path is a zigzag path # Cells in a diagonal direction are given priority # Comment this line to see the difference neighbors = neighbors.sort_by { |neighbor_x, neighbor_y| proximity_to_star(neighbor_x, neighbor_y) } neighbors end # Finds the vertical and horizontal distance of a cell from the star # and returns the larger value # This method is used to have a zigzag pattern in the rendered path # A cell that is [5, 5] from the star, # is explored before over a cell that is [0, 7] away. # So, if possible, the search tries to go diagonal (zigzag) first def proximity_to_star(x, y) distance_x = (state.star.x - x).abs distance_y = (state.star.y - y).abs if distance_x > distance_y return distance_x else return distance_y end end # When the user grabs the star and puts their cursor to the far right # and moves up and down, the star is supposed to move along the grid as well # Finding the cell closest to the mouse helps with this def cell_closest_to_mouse # Closest cell to the mouse in the first grid x = (inputs.mouse.point.x / grid.cell_size).to_i y = (inputs.mouse.point.y / grid.cell_size).to_i # Bound x and y to the grid x = grid.width - 1 if x > grid.width - 1 y = grid.height - 1 if y > grid.height - 1 # Return closest cell [x, y] end # When the user grabs the star and puts their cursor to the far right # and moves up and down, the star is supposed to move along the grid as well # Finding the cell closest to the mouse in the second grid helps with this def cell_closest_to_mouse2 # Closest cell grid to the mouse in the second x = (inputs.mouse.point.x / grid.cell_size).to_i y = (inputs.mouse.point.y / grid.cell_size).to_i # Translate the cell to the first grid x -= grid.width + 1 # Bound x and y to the first grid x = grid.width - 1 if x > grid.width - 1 y = grid.height - 1 if y > grid.height - 1 # Return closest cell [x, y] end # Signal that the user is going to be moving the star from the first grid def star_clicked? inputs.mouse.down && inputs.mouse.point.inside_rect?(scale_up(state.star)) end # Signal that the user is going to be moving the star from the second grid def star2_clicked? inputs.mouse.down && inputs.mouse.point.inside_rect?(early_exit_scale_up(state.star)) end # Signal that the user is going to be moving the target from the first grid def target_clicked? inputs.mouse.down && inputs.mouse.point.inside_rect?(scale_up(state.target)) end # Signal that the user is going to be moving the target from the second grid def target2_clicked? inputs.mouse.down && inputs.mouse.point.inside_rect?(early_exit_scale_up(state.target)) end # Signal that the user is going to be removing walls from the first grid def wall_clicked? inputs.mouse.down && mouse_inside_wall? end # Signal that the user is going to be removing walls from the second grid def wall2_clicked? inputs.mouse.down && mouse_inside_wall2? end # Signal that the user is going to be adding walls from the first grid def grid_clicked? inputs.mouse.down && mouse_inside_grid? end # Signal that the user is going to be adding walls from the second grid def grid2_clicked? inputs.mouse.down && mouse_inside_grid2? end # Returns whether the mouse is inside of a wall in the first grid # Part of the condition that checks whether the user is removing a wall def mouse_inside_wall? state.walls.each_key do | wall | return true if inputs.mouse.point.inside_rect?(scale_up(wall)) end false end # Returns whether the mouse is inside of a wall in the second grid # Part of the condition that checks whether the user is removing a wall def mouse_inside_wall2? state.walls.each_key do | wall | return true if inputs.mouse.point.inside_rect?(early_exit_scale_up(wall)) end false end # Returns whether the mouse is inside of the first grid # Part of the condition that checks whether the user is adding a wall def mouse_inside_grid? inputs.mouse.point.inside_rect?(scale_up(grid.rect)) end # Returns whether the mouse is inside of the second grid # Part of the condition that checks whether the user is adding a wall def mouse_inside_grid2? inputs.mouse.point.inside_rect?(early_exit_scale_up(grid.rect)) end # These methods provide handy aliases to colors # Light brown def unvisited_color [221, 212, 213] end # Camo Green def wall_color [134, 134, 120] end # Pastel White def path_color [231, 230, 228] end def red [255, 0, 0] end # Makes code more concise def grid state.grid end end # Method that is called by DragonRuby periodically # Used for updating animations and calculations def tick args # Pressing r will reset the application if args.inputs.keyboard.key_down.r args.gtk.reset reset return end # Every tick, new args are passed, and the Breadth First Search tick is called $early_exit_breadth_first_search ||= EarlyExitBreadthFirstSearch.new(args) $early_exit_breadth_first_search.args = args $early_exit_breadth_first_search.tick end def reset $early_exit_breadth_first_search = nil end13 Path Finding Algorithms - Dijkstra - main.rb
# ./samples/13_path_finding_algorithms/05_dijkstra/app/main.rb # Demonstrates how Dijkstra's Algorithm allows movement costs to be considered # Inspired by https://www.redblobgames.com/pathfinding/a-star/introduction.html # The first grid is a breadth first search with an early exit. # It shows a heat map of all the cells that were visited by the search and their relative distance. # The second grid is an implementation of Dijkstra's algorithm. # Light green cells have 5 times the movement cost of regular cells. # The heat map will darken based on movement cost. # Dark green cells are walls, and the search cannot go through them. class Movement_Costs attr_gtk # This method is called every frame/tick # Every tick, the current state of the search is rendered on the screen, # User input is processed, and # The next step in the search is calculated def tick defaults render input calc end def defaults # Variables to edit the size and appearance of the grid # Freely customizable to user's liking grid.width ||= 10 grid.height ||= 10 grid.cell_size ||= 60 grid.rect ||= [0, 0, grid.width, grid.height] # The location of the star and walls of the grid # They can be modified to have a different initial grid # Walls are stored in a hash for quick look up when doing the search state.star ||= [1, 5] state.target ||= [8, 4] state.walls ||= {[1, 1] => true, [2, 1] => true, [3, 1] => true, [1, 2] => true, [2, 2] => true, [3, 2] => true} state.hills ||= { [4, 1] => true, [5, 1] => true, [4, 2] => true, [5, 2] => true, [6, 2] => true, [4, 3] => true, [5, 3] => true, [6, 3] => true, [3, 4] => true, [4, 4] => true, [5, 4] => true, [6, 4] => true, [7, 4] => true, [3, 5] => true, [4, 5] => true, [5, 5] => true, [6, 5] => true, [7, 5] => true, [4, 6] => true, [5, 6] => true, [6, 6] => true, [7, 6] => true, [4, 7] => true, [5, 7] => true, [6, 7] => true, [4, 8] => true, [5, 8] => true, } # What the user is currently editing on the grid # We store this value, because we want to remember the value even when # the user's cursor is no longer over what they're interacting with, but # they are still clicking down on the mouse. state.user_input ||= :none # Values that are used for the breadth first search # Keeping track of what cells were visited prevents counting cells multiple times breadth_first_search.visited ||= {} # The cells from which the breadth first search will expand breadth_first_search.frontier ||= [] # Keeps track of which cell all cells were searched from # Used to recreate the path from the target to the star breadth_first_search.came_from ||= {} # Keeps track of the movement cost so far to be at a cell # Allows the costs of new cells to be quickly calculated # Also doubles as a way to check if cells have already been visited dijkstra_search.cost_so_far ||= {} # The cells from which the Dijkstra search will expand dijkstra_search.frontier ||= [] # Keeps track of which cell all cells were searched from # Used to recreate the path from the target to the star dijkstra_search.came_from ||= {} end # Draws everything onto the screen def render render_background render_heat_maps render_star render_target render_hills render_walls render_paths end # The methods below subdivide the task of drawing everything to the screen # Draws what the grid looks like with nothing on it def render_background render_unvisited render_grid_lines render_labels end # Draws two rectangles the size of the grid in the default cell color # Used as part of the background def render_unvisited outputs.solids << [scale_up(grid.rect), unvisited_color] outputs.solids << [move_and_scale_up(grid.rect), unvisited_color] end # Draws grid lines to show the division of the grid into cells def render_grid_lines for x in 0..grid.width outputs.lines << vertical_line(x) outputs.lines << shifted_vertical_line(x) end for y in 0..grid.height outputs.lines << horizontal_line(y) outputs.lines << shifted_horizontal_line(y) end end # Easy way to draw vertical lines given an index for the first grid def vertical_line column scale_up([column, 0, column, grid.height]) end # Easy way to draw horizontal lines given an index for the second grid def horizontal_line row scale_up([0, row, grid.width, row]) end # Easy way to draw vertical lines given an index for the first grid def shifted_vertical_line column scale_up([column + grid.width + 1, 0, column + grid.width + 1, grid.height]) end # Easy way to draw horizontal lines given an index for the second grid def shifted_horizontal_line row scale_up([grid.width + 1, row, grid.width + grid.width + 1, row]) end # Labels the grids def render_labels outputs.labels << [175, 650, "Number of steps", 3] outputs.labels << [925, 650, "Distance", 3] end def render_paths render_breadth_first_search_path render_dijkstra_path end def render_heat_maps render_breadth_first_search_heat_map render_dijkstra_heat_map end # Renders the breadth first search on the first grid def render_breadth_first_search end # This heat map shows the cells explored by the breadth first search and how far they are from the star. def render_breadth_first_search_heat_map # For each cell explored breadth_first_search.visited.each_key do | visited_cell | # Find its distance from the star distance = (state.star.x - visited_cell.x).abs + (state.star.y - visited_cell.y).abs max_distance = grid.width + grid.height # Get it as a percent of the maximum distance and scale to 255 for use as an alpha value alpha = 255.to_i * distance.to_i / max_distance.to_i outputs.solids << [scale_up(visited_cell), red, alpha] end end def render_breadth_first_search_path # If the search found the target if breadth_first_search.visited.has_key?(state.target) # Start from the target endpoint = state.target # And the cell it came from next_endpoint = breadth_first_search.came_from[endpoint] while endpoint and next_endpoint # Draw a path between these two cells path = get_path_between(endpoint, next_endpoint) outputs.solids << [scale_up(path), path_color] # And get the next pair of cells endpoint = next_endpoint next_endpoint = breadth_first_search.came_from[endpoint] # Continue till there are no more cells end end end # Renders the Dijkstra search on the second grid def render_dijkstra end def render_dijkstra_heat_map dijkstra_search.cost_so_far.each do |visited_cell, cost| max_cost = (grid.width + grid.height) #* 5 alpha = 255.to_i * cost.to_i / max_cost.to_i outputs.solids << [move_and_scale_up(visited_cell), red, alpha] end end def render_dijkstra_path # If the search found the target if dijkstra_search.came_from.has_key?(state.target) # Get the target and the cell it came from endpoint = state.target next_endpoint = dijkstra_search.came_from[endpoint] while endpoint and next_endpoint # Draw a path between them path = get_path_between(endpoint, next_endpoint) outputs.solids << [move_and_scale_up(path), path_color] # Shift one cell down the path endpoint = next_endpoint next_endpoint = dijkstra_search.came_from[endpoint] # Repeat till the end of the path end end end # Renders the star on both grids def render_star outputs.sprites << [scale_up(state.star), 'star.png'] outputs.sprites << [move_and_scale_up(state.star), 'star.png'] end # Renders the target on both grids def render_target outputs.sprites << [scale_up(state.target), 'target.png'] outputs.sprites << [move_and_scale_up(state.target), 'target.png'] end def render_hills state.hills.each_key do |hill| outputs.solids << [scale_up(hill), hill_color] outputs.solids << [move_and_scale_up(hill), hill_color] end end # Draws the walls on both grids def render_walls state.walls.each_key do |wall| outputs.solids << [scale_up(wall), wall_color] outputs.solids << [move_and_scale_up(wall), wall_color] end end def get_path_between(cell_one, cell_two) path = nil if cell_one.x == cell_two.x if cell_one.y < cell_two.y path = [cell_one.x + 0.3, cell_one.y + 0.3, 0.4, 1.4] else path = [cell_two.x + 0.3, cell_two.y + 0.3, 0.4, 1.4] end else if cell_one.x < cell_two.x path = [cell_one.x + 0.3, cell_one.y + 0.3, 1.4, 0.4] else path = [cell_two.x + 0.3, cell_two.y + 0.3, 1.4, 0.4] end end path end # Representation of how far away visited cells are from the star # Replaces the render_visited method # Visually demonstrates the effectiveness of early exit for pathfinding def render_breadth_first_search_heat_map breadth_first_search.visited.each_key do | visited_cell | distance = (state.star.x - visited_cell.x).abs + (state.star.y - visited_cell.y).abs max_distance = grid.width + grid.height alpha = 255.to_i * distance.to_i / max_distance.to_i outputs.solids << [scale_up(visited_cell), red, alpha] end end # Translates the given cell grid.width + 1 to the right and then scales up # Used to draw cells for the second grid # This method does not work for lines, # so separate methods exist for the grid lines def move_and_scale_up(cell) cell_clone = cell.clone cell_clone.x += grid.width + 1 scale_up(cell_clone) end # In code, the cells are represented as 1x1 rectangles # When drawn, the cells are larger than 1x1 rectangles # This method is used to scale up cells, and lines # Objects are scaled up according to the grid.cell_size variable # This allows for easy customization of the visual scale of the grid def scale_up(cell) # Prevents the original value of cell from being edited cell = cell.clone # If cell is just an x and y coordinate if cell.size == 2 # Add a width and height of 1 cell << 1 cell << 1 end # Scale all the values up cell.map! { |value| value * grid.cell_size } # Returns the scaled up cell cell end # Handles user input every tick so the grid can be edited # Separate input detection and processing is needed # For example: Adding walls is started by clicking down on a hill, # but the mouse doesn't need to remain over hills to add walls def input # If the mouse was lifted this tick if inputs.mouse.up # Set current input to none state.user_input = :none end # If the mouse was clicked this tick if inputs.mouse.down # Determine what the user is editing and edit the state.user_input variable determine_input end # Process user input based on user_input variable and current mouse position process_input end # Determines what the user is editing and stores the value # This method is called the tick the mouse is clicked # Storing the value allows the user to continue the same edit as long as the # mouse left click is held def determine_input # If the mouse is over the star in the first grid if mouse_over_star? # The user is editing the star from the first grid state.user_input = :star # If the mouse is over the star in the second grid elsif mouse_over_star2? # The user is editing the star from the second grid state.user_input = :star2 # If the mouse is over the target in the first grid elsif mouse_over_target? # The user is editing the target from the first grid state.user_input = :target # If the mouse is over the target in the second grid elsif mouse_over_target2? # The user is editing the target from the second grid state.user_input = :target2 # If the mouse is over a wall in the first grid elsif mouse_over_wall? # The user is removing a wall from the first grid state.user_input = :remove_wall # If the mouse is over a wall in the second grid elsif mouse_over_wall2? # The user is removing a wall from the second grid state.user_input = :remove_wall2 # If the mouse is over a hill in the first grid elsif mouse_over_hill? # The user is adding a wall from the first grid state.user_input = :add_wall # If the mouse is over a hill in the second grid elsif mouse_over_hill2? # The user is adding a wall from the second grid state.user_input = :add_wall2 # If the mouse is over the first grid elsif mouse_over_grid? # The user is adding a hill from the first grid state.user_input = :add_hill # If the mouse is over the second grid elsif mouse_over_grid2? # The user is adding a hill from the second grid state.user_input = :add_hill2 end end # Processes click and drag based on what the user is currently dragging def process_input if state.user_input == :star input_star elsif state.user_input == :star2 input_star2 elsif state.user_input == :target input_target elsif state.user_input == :target2 input_target2 elsif state.user_input == :remove_wall input_remove_wall elsif state.user_input == :remove_wall2 input_remove_wall2 elsif state.user_input == :add_hill input_add_hill elsif state.user_input == :add_hill2 input_add_hill2 elsif state.user_input == :add_wall input_add_wall elsif state.user_input == :add_wall2 input_add_wall2 end end # Calculates the two searches def calc # If the searches have not started if breadth_first_search.visited.empty? # Calculate the two searches calc_breadth_first calc_dijkstra end end def calc_breadth_first # Sets up the Breadth First Search breadth_first_search.visited[state.star] = true breadth_first_search.frontier << state.star breadth_first_search.came_from[state.star] = nil until breadth_first_search.frontier.empty? return if breadth_first_search.visited.has_key?(state.target) # A step in the search # Takes the next frontier cell new_frontier = breadth_first_search.frontier.shift # For each of its neighbors adjacent_neighbors(new_frontier).each do | neighbor | # That have not been visited and are not walls unless breadth_first_search.visited.has_key?(neighbor) || state.walls.has_key?(neighbor) # Add them to the frontier and mark them as visited in the first grid breadth_first_search.visited[neighbor] = true breadth_first_search.frontier << neighbor # Remember which cell the neighbor came from breadth_first_search.came_from[neighbor] = new_frontier end end end end # Calculates the Dijkstra Search from the beginning to the end def calc_dijkstra # The initial values for the Dijkstra search dijkstra_search.frontier << [state.star, 0] dijkstra_search.came_from[state.star] = nil dijkstra_search.cost_so_far[state.star] = 0 # Until their are no more cells to be explored until dijkstra_search.frontier.empty? # Get the next cell to be explored from # We get the first element of the array which is the cell. The second element is the priority. current = dijkstra_search.frontier.shift[0] # Stop the search if we found the target return if current == state.target # For each of the neighbors adjacent_neighbors(current).each do | neighbor | # Unless this cell is a wall or has already been explored. unless dijkstra_search.came_from.has_key?(neighbor) or state.walls.has_key?(neighbor) # Calculate the movement cost of getting to this cell and memo new_cost = dijkstra_search.cost_so_far[current] + cost(neighbor) dijkstra_search.cost_so_far[neighbor] = new_cost # Add this neighbor to the cells too be explored dijkstra_search.frontier << [neighbor, new_cost] dijkstra_search.came_from[neighbor] = current end end # Sort the frontier so exploration occurs that have a low cost so far. # My implementation of a priority queue dijkstra_search.frontier = dijkstra_search.frontier.sort_by {|cell, priority| priority} end end def cost(cell) if state.hills.has_key?(cell) return 5 else return 1 end end # Moves the star to the cell closest to the mouse in the first grid # Only resets the search if the star changes position # Called whenever the user is editing the star (puts mouse down on star) def input_star old_star = state.star.clone unless cell_closest_to_mouse == state.target state.star = cell_closest_to_mouse end unless old_star == state.star reset_search end end # Moves the star to the cell closest to the mouse in the second grid # Only resets the search if the star changes position # Called whenever the user is editing the star (puts mouse down on star) def input_star2 old_star = state.star.clone unless cell_closest_to_mouse2 == state.target state.star = cell_closest_to_mouse2 end unless old_star == state.star reset_search end end # Moves the target to the grid closest to the mouse in the first grid # Only reset_searchs the search if the target changes position # Called whenever the user is editing the target (puts mouse down on target) def input_target old_target = state.target.clone unless cell_closest_to_mouse == state.star state.target = cell_closest_to_mouse end unless old_target == state.target reset_search end end # Moves the target to the cell closest to the mouse in the second grid # Only reset_searchs the search if the target changes position # Called whenever the user is editing the target (puts mouse down on target) def input_target2 old_target = state.target.clone unless cell_closest_to_mouse2 == state.star state.target = cell_closest_to_mouse2 end unless old_target == state.target reset_search end end # Removes walls in the first grid that are under the cursor def input_remove_wall # The mouse needs to be inside the grid, because we only want to remove walls # the cursor is directly over # Recalculations should only occur when a wall is actually deleted if mouse_over_grid? if state.walls.has_key?(cell_closest_to_mouse) or state.hills.has_key?(cell_closest_to_mouse) state.walls.delete(cell_closest_to_mouse) state.hills.delete(cell_closest_to_mouse) reset_search end end end # Removes walls in the second grid that are under the cursor def input_remove_wall2 # The mouse needs to be inside the grid, because we only want to remove walls # the cursor is directly over # Recalculations should only occur when a wall is actually deleted if mouse_over_grid2? if state.walls.has_key?(cell_closest_to_mouse2) or state.hills.has_key?(cell_closest_to_mouse2) state.walls.delete(cell_closest_to_mouse2) state.hills.delete(cell_closest_to_mouse2) reset_search end end end # Adds a hill in the first grid in the cell the mouse is over def input_add_hill if mouse_over_grid? unless state.hills.has_key?(cell_closest_to_mouse) state.hills[cell_closest_to_mouse] = true reset_search end end end # Adds a hill in the second grid in the cell the mouse is over def input_add_hill2 if mouse_over_grid2? unless state.hills.has_key?(cell_closest_to_mouse2) state.hills[cell_closest_to_mouse2] = true reset_search end end end # Adds a wall in the first grid in the cell the mouse is over def input_add_wall if mouse_over_grid? unless state.walls.has_key?(cell_closest_to_mouse) state.hills.delete(cell_closest_to_mouse) state.walls[cell_closest_to_mouse] = true reset_search end end end # Adds a wall in the second grid in the cell the mouse is over def input_add_wall2 if mouse_over_grid2? unless state.walls.has_key?(cell_closest_to_mouse2) state.hills.delete(cell_closest_to_mouse2) state.walls[cell_closest_to_mouse2] = true reset_search end end end # Whenever the user edits the grid, # The search has to be reset_searchd upto the current step # with the current grid as the initial state of the grid def reset_search breadth_first_search.visited = {} breadth_first_search.frontier = [] breadth_first_search.came_from = {} dijkstra_search.frontier = [] dijkstra_search.came_from = {} dijkstra_search.cost_so_far = {} end # Returns a list of adjacent cells # Used to determine what the next cells to be added to the frontier are def adjacent_neighbors(cell) neighbors = [] # Gets all the valid neighbors into the array # From southern neighbor, clockwise neighbors << [cell.x , cell.y - 1] unless cell.y == 0 neighbors << [cell.x - 1, cell.y ] unless cell.x == 0 neighbors << [cell.x , cell.y + 1] unless cell.y == grid.height - 1 neighbors << [cell.x + 1, cell.y ] unless cell.x == grid.width - 1 # Sorts the neighbors so the rendered path is a zigzag path # Cells in a diagonal direction are given priority # Comment this line to see the difference neighbors = neighbors.sort_by { |neighbor_x, neighbor_y| proximity_to_star(neighbor_x, neighbor_y) } neighbors end # Finds the vertical and horizontal distance of a cell from the star # and returns the larger value # This method is used to have a zigzag pattern in the rendered path # A cell that is [5, 5] from the star, # is explored before over a cell that is [0, 7] away. # So, if possible, the search tries to go diagonal (zigzag) first def proximity_to_star(x, y) distance_x = (state.star.x - x).abs distance_y = (state.star.y - y).abs if distance_x > distance_y return distance_x else return distance_y end end # When the user grabs the star and puts their cursor to the far right # and moves up and down, the star is supposed to move along the grid as well # Finding the cell closest to the mouse helps with this def cell_closest_to_mouse # Closest cell to the mouse in the first grid x = (inputs.mouse.point.x / grid.cell_size).to_i y = (inputs.mouse.point.y / grid.cell_size).to_i # Bound x and y to the grid x = grid.width - 1 if x > grid.width - 1 y = grid.height - 1 if y > grid.height - 1 # Return closest cell [x, y] end # When the user grabs the star and puts their cursor to the far right # and moves up and down, the star is supposed to move along the grid as well # Finding the cell closest to the mouse in the second grid helps with this def cell_closest_to_mouse2 # Closest cell grid to the mouse in the second x = (inputs.mouse.point.x / grid.cell_size).to_i y = (inputs.mouse.point.y / grid.cell_size).to_i # Translate the cell to the first grid x -= grid.width + 1 # Bound x and y to the first grid x = 0 if x < 0 y = 0 if y < 0 x = grid.width - 1 if x > grid.width - 1 y = grid.height - 1 if y > grid.height - 1 # Return closest cell [x, y] end # Signal that the user is going to be moving the star from the first grid def mouse_over_star? inputs.mouse.point.inside_rect?(scale_up(state.star)) end # Signal that the user is going to be moving the star from the second grid def mouse_over_star2? inputs.mouse.point.inside_rect?(move_and_scale_up(state.star)) end # Signal that the user is going to be moving the target from the first grid def mouse_over_target? inputs.mouse.point.inside_rect?(scale_up(state.target)) end # Signal that the user is going to be moving the target from the second grid def mouse_over_target2? inputs.mouse.point.inside_rect?(move_and_scale_up(state.target)) end # Signal that the user is going to be removing walls from the first grid def mouse_over_wall? state.walls.each_key do | wall | return true if inputs.mouse.point.inside_rect?(scale_up(wall)) end false end # Signal that the user is going to be removing walls from the second grid def mouse_over_wall2? state.walls.each_key do | wall | return true if inputs.mouse.point.inside_rect?(move_and_scale_up(wall)) end false end # Signal that the user is going to be removing hills from the first grid def mouse_over_hill? state.hills.each_key do | hill | return true if inputs.mouse.point.inside_rect?(scale_up(hill)) end false end # Signal that the user is going to be removing hills from the second grid def mouse_over_hill2? state.hills.each_key do | hill | return true if inputs.mouse.point.inside_rect?(move_and_scale_up(hill)) end false end # Signal that the user is going to be adding walls from the first grid def mouse_over_grid? inputs.mouse.point.inside_rect?(scale_up(grid.rect)) end # Signal that the user is going to be adding walls from the second grid def mouse_over_grid2? inputs.mouse.point.inside_rect?(move_and_scale_up(grid.rect)) end # These methods provide handy aliases to colors # Light brown def unvisited_color [221, 212, 213] end # Camo Green def wall_color [134, 134, 120] end # Pastel White def path_color [231, 230, 228] end def red [255, 0, 0] end # A Green def hill_color [139, 173, 132] end # Makes code more concise def grid state.grid end def breadth_first_search state.breadth_first_search end def dijkstra_search state.dijkstra_search end end # Method that is called by DragonRuby periodically # Used for updating animations and calculations def tick args # Pressing r will reset the application if args.inputs.keyboard.key_down.r args.gtk.reset reset return end # Every tick, new args are passed, and the Dijkstra tick method is called $movement_costs ||= Movement_Costs.new(args) $movement_costs.args = args $movement_costs.tick end def reset $movement_costs = nil end13 Path Finding Algorithms - Heuristic - main.rb
# ./samples/13_path_finding_algorithms/06_heuristic/app/main.rb # This program is inspired by https://www.redblobgames.com/pathfinding/a-star/introduction.html # This time the heuristic search still explored less of the grid, hence finishing faster. # However, it did not find the shortest path between the star and the target. # The only difference between this app and Heuristic is the change of the starting position. class Heuristic_With_Walls attr_gtk def tick defaults render input # If animation is playing, and max steps have not been reached # Move the search a step forward if state.play && state.current_step < state.max_steps # Variable that tells the program what step to recalculate up to state.current_step += 1 move_searches_one_step_forward end end def defaults # Variables to edit the size and appearance of the grid # Freely customizable to user's liking grid.width ||= 15 grid.height ||= 15 grid.cell_size ||= 40 grid.rect ||= [0, 0, grid.width, grid.height] grid.star ||= [0, 2] grid.target ||= [14, 12] grid.walls ||= {} # There are no hills in the Heuristic Search Demo # What the user is currently editing on the grid # We store this value, because we want to remember the value even when # the user's cursor is no longer over what they're interacting with, but # they are still clicking down on the mouse. state.user_input ||= :none # These variables allow the breadth first search to take place # Came_from is a hash with a key of a cell and a value of the cell that was expanded from to find the key. # Used to prevent searching cells that have already been found # and to trace a path from the target back to the starting point. # Frontier is an array of cells to expand the search from. # The search is over when there are no more cells to search from. # Path stores the path from the target to the star, once the target has been found # It prevents calculating the path every tick. bfs.came_from ||= {} bfs.frontier ||= [] bfs.path ||= [] heuristic.came_from ||= {} heuristic.frontier ||= [] heuristic.path ||= [] # Stores which step of the animation is being rendered # When the user moves the star or messes with the walls, # the searches are recalculated up to this step # Unless the current step has a value unless state.current_step # Set the current step to 10 state.current_step = 10 # And calculate the searches up to step 10 recalculate_searches end # At some step the animation will end, # and further steps won't change anything (the whole grid will be explored) # This step is roughly the grid's width * height # When anim_steps equals max_steps no more calculations will occur # and the slider will be at the end state.max_steps = grid.width * grid.height # Whether the animation should play or not # If true, every tick moves anim_steps forward one # Pressing the stepwise animation buttons will pause the animation # An if statement instead of the ||= operator is used for assigning a boolean value. # The || operator does not differentiate between nil and false. if state.play == nil state.play = false end # Store the rects of the buttons that control the animation # They are here for user customization # Editing these might require recentering the text inside them # Those values can be found in the render_button methods buttons.left = [470, 600, 50, 50] buttons.center = [520, 600, 200, 50] buttons.right = [720, 600, 50, 50] # The variables below are related to the slider # They allow the user to customize them # They also give a central location for the render and input methods to get # information from # x & y are the coordinates of the leftmost part of the slider line slider.x = 440 slider.y = 675 # This is the width of the line slider.w = 360 # This is the offset for the circle # Allows the center of the circle to be on the line, # as opposed to the upper right corner slider.offset = 20 # This is the spacing between each of the notches on the slider # Notches are places where the circle can rest on the slider line # There needs to be a notch for each step before the maximum number of steps slider.spacing = slider.w.to_f / state.max_steps.to_f end # All methods with render draw stuff on the screen # UI has buttons, the slider, and labels # The search specific rendering occurs in the respective methods def render render_ui render_bfs render_heuristic end def render_ui render_buttons render_slider render_labels end def render_buttons render_left_button render_center_button render_right_button end def render_bfs render_bfs_grid render_bfs_star render_bfs_target render_bfs_visited render_bfs_walls render_bfs_frontier render_bfs_path end def render_heuristic render_heuristic_grid render_heuristic_star render_heuristic_target render_heuristic_visited render_heuristic_walls render_heuristic_frontier render_heuristic_path end # This method handles user input every tick def input # Check and handle button input input_buttons # If the mouse was lifted this tick if inputs.mouse.up # Set current input to none state.user_input = :none end # If the mouse was clicked this tick if inputs.mouse.down # Determine what the user is editing and appropriately edit the state.user_input variable determine_input end # Process user input based on user_input variable and current mouse position process_input end # Determines what the user is editing # This method is called when the mouse is clicked down def determine_input if mouse_over_slider? state.user_input = :slider # If the mouse is over the star in the first grid elsif bfs_mouse_over_star? # The user is editing the star from the first grid state.user_input = :bfs_star # If the mouse is over the star in the second grid elsif heuristic_mouse_over_star? # The user is editing the star from the second grid state.user_input = :heuristic_star # If the mouse is over the target in the first grid elsif bfs_mouse_over_target? # The user is editing the target from the first grid state.user_input = :bfs_target # If the mouse is over the target in the second grid elsif heuristic_mouse_over_target? # The user is editing the target from the second grid state.user_input = :heuristic_target # If the mouse is over a wall in the first grid elsif bfs_mouse_over_wall? # The user is removing a wall from the first grid state.user_input = :bfs_remove_wall # If the mouse is over a wall in the second grid elsif heuristic_mouse_over_wall? # The user is removing a wall from the second grid state.user_input = :heuristic_remove_wall # If the mouse is over the first grid elsif bfs_mouse_over_grid? # The user is adding a wall from the first grid state.user_input = :bfs_add_wall # If the mouse is over the second grid elsif heuristic_mouse_over_grid? # The user is adding a wall from the second grid state.user_input = :heuristic_add_wall end end # Processes click and drag based on what the user is currently dragging def process_input if state.user_input == :slider process_input_slider elsif state.user_input == :bfs_star process_input_bfs_star elsif state.user_input == :heuristic_star process_input_heuristic_star elsif state.user_input == :bfs_target process_input_bfs_target elsif state.user_input == :heuristic_target process_input_heuristic_target elsif state.user_input == :bfs_remove_wall process_input_bfs_remove_wall elsif state.user_input == :heuristic_remove_wall process_input_heuristic_remove_wall elsif state.user_input == :bfs_add_wall process_input_bfs_add_wall elsif state.user_input == :heuristic_add_wall process_input_heuristic_add_wall end end def render_slider # Using primitives hides the line under the white circle of the slider # Draws the line outputs.primitives << [slider.x, slider.y, slider.x + slider.w, slider.y].line # The circle needs to be offset so that the center of the circle # overlaps the line instead of the upper right corner of the circle # The circle's x value is also moved based on the current seach step circle_x = (slider.x - slider.offset) + (state.current_step * slider.spacing) circle_y = (slider.y - slider.offset) circle_rect = [circle_x, circle_y, 37, 37] outputs.primitives << [circle_rect, 'circle-white.png'].sprite end def render_labels outputs.labels << [205, 625, "Breadth First Search"] outputs.labels << [820, 625, "Heuristic Best-First Search"] end def render_left_button # Draws the button_color button, and a black border # The border separates the buttons visually outputs.solids << [buttons.left, button_color] outputs.borders << [buttons.left] # Renders an explanatory label in the center of the button # Explains to the user what the button does # If the button size is changed, the label might need to be edited as well # to keep the label in the center of the button label_x = buttons.left.x + 20 label_y = buttons.left.y + 35 outputs.labels << [label_x, label_y, "<"] end def render_center_button # Draws the button_color button, and a black border # The border separates the buttons visually outputs.solids << [buttons.center, button_color] outputs.borders << [buttons.center] # Renders an explanatory label in the center of the button # Explains to the user what the button does # If the button size is changed, the label might need to be edited as well # to keep the label in the center of the button label_x = buttons.center.x + 37 label_y = buttons.center.y + 35 label_text = state.play ? "Pause Animation" : "Play Animation" outputs.labels << [label_x, label_y, label_text] end def render_right_button # Draws the button_color button, and a black border # The border separates the buttons visually outputs.solids << [buttons.right, button_color] outputs.borders << [buttons.right] # Renders an explanatory label in the center of the button # Explains to the user what the button does label_x = buttons.right.x + 20 label_y = buttons.right.y + 35 outputs.labels << [label_x, label_y, ">"] end def render_bfs_grid # A large rect the size of the grid outputs.solids << [bfs_scale_up(grid.rect), default_color] # The vertical grid lines for x in 0..grid.width outputs.lines << bfs_vertical_line(x) end # The horizontal grid lines for y in 0..grid.height outputs.lines << bfs_horizontal_line(y) end end def render_heuristic_grid # A large rect the size of the grid outputs.solids << [heuristic_scale_up(grid.rect), default_color] # The vertical grid lines for x in 0..grid.width outputs.lines << heuristic_vertical_line(x) end # The horizontal grid lines for y in 0..grid.height outputs.lines << heuristic_horizontal_line(y) end end # Returns a vertical line for a column of the first grid def bfs_vertical_line column bfs_scale_up([column, 0, column, grid.height]) end # Returns a horizontal line for a column of the first grid def bfs_horizontal_line row bfs_scale_up([0, row, grid.width, row]) end # Returns a vertical line for a column of the second grid def heuristic_vertical_line column bfs_scale_up([column + grid.width + 1, 0, column + grid.width + 1, grid.height]) end # Returns a horizontal line for a column of the second grid def heuristic_horizontal_line row bfs_scale_up([grid.width + 1, row, grid.width + grid.width + 1, row]) end # Renders the star on the first grid def render_bfs_star outputs.sprites << [bfs_scale_up(grid.star), 'star.png'] end # Renders the star on the second grid def render_heuristic_star outputs.sprites << [heuristic_scale_up(grid.star), 'star.png'] end # Renders the target on the first grid def render_bfs_target outputs.sprites << [bfs_scale_up(grid.target), 'target.png'] end # Renders the target on the second grid def render_heuristic_target outputs.sprites << [heuristic_scale_up(grid.target), 'target.png'] end # Renders the walls on the first grid def render_bfs_walls grid.walls.each_key do | wall | outputs.solids << [bfs_scale_up(wall), wall_color] end end # Renders the walls on the second grid def render_heuristic_walls grid.walls.each_key do | wall | outputs.solids << [heuristic_scale_up(wall), wall_color] end end # Renders the visited cells on the first grid def render_bfs_visited bfs.came_from.each_key do | visited_cell | outputs.solids << [bfs_scale_up(visited_cell), visited_color] end end # Renders the visited cells on the second grid def render_heuristic_visited heuristic.came_from.each_key do | visited_cell | outputs.solids << [heuristic_scale_up(visited_cell), visited_color] end end # Renders the frontier cells on the first grid def render_bfs_frontier bfs.frontier.each do | frontier_cell | outputs.solids << [bfs_scale_up(frontier_cell), frontier_color, 200] end end # Renders the frontier cells on the second grid def render_heuristic_frontier heuristic.frontier.each do | frontier_cell | outputs.solids << [heuristic_scale_up(frontier_cell), frontier_color, 200] end end # Renders the path found by the breadth first search on the first grid def render_bfs_path bfs.path.each do | path | outputs.solids << [bfs_scale_up(path), path_color] end end # Renders the path found by the heuristic search on the second grid def render_heuristic_path heuristic.path.each do | path | outputs.solids << [heuristic_scale_up(path), path_color] end end # Returns the rect for the path between two cells based on their relative positions def get_path_between(cell_one, cell_two) path = nil # If cell one is above cell two if cell_one.x == cell_two.x and cell_one.y > cell_two.y # Path starts from the center of cell two and moves upward to the center of cell one path = [cell_two.x + 0.3, cell_two.y + 0.3, 0.4, 1.4] # If cell one is below cell two elsif cell_one.x == cell_two.x and cell_one.y < cell_two.y # Path starts from the center of cell one and moves upward to the center of cell two path = [cell_one.x + 0.3, cell_one.y + 0.3, 0.4, 1.4] # If cell one is to the left of cell two elsif cell_one.x > cell_two.x and cell_one.y == cell_two.y # Path starts from the center of cell two and moves rightward to the center of cell one path = [cell_two.x + 0.3, cell_two.y + 0.3, 1.4, 0.4] # If cell one is to the right of cell two elsif cell_one.x < cell_two.x and cell_one.y == cell_two.y # Path starts from the center of cell one and moves rightward to the center of cell two path = [cell_one.x + 0.3, cell_one.y + 0.3, 1.4, 0.4] end path end # In code, the cells are represented as 1x1 rectangles # When drawn, the cells are larger than 1x1 rectangles # This method is used to scale up cells, and lines # Objects are scaled up according to the grid.cell_size variable # This allows for easy customization of the visual scale of the grid # This method scales up cells for the first grid def bfs_scale_up(cell) # Prevents the original value of cell from being edited cell = cell.clone # If cell is just an x and y coordinate if cell.size == 2 # Add a width and height of 1 cell << 1 cell << 1 end # Scale all the values up cell.map! { |value| value * grid.cell_size } # Returns the scaled up cell cell end # Translates the given cell grid.width + 1 to the right and then scales up # Used to draw cells for the second grid # This method does not work for lines, # so separate methods exist for the grid lines def heuristic_scale_up(cell) # Prevents the original value of cell from being edited cell = cell.clone # Translates the cell to the second grid equivalent cell.x += grid.width + 1 # Proceeds as if scaling up for the first grid bfs_scale_up(cell) end # Checks and handles input for the buttons # Called when the mouse is lifted def input_buttons input_left_button input_center_button input_right_button end # Checks if the previous step button is clicked # If it is, it pauses the animation and moves the search one step backward def input_left_button if left_button_clicked? state.play = false state.current_step -= 1 recalculate_searches end end # Controls the play/pause button # Inverses whether the animation is playing or not when clicked def input_center_button if center_button_clicked? || inputs.keyboard.key_down.space state.play = !state.play end end # Checks if the next step button is clicked # If it is, it pauses the animation and moves the search one step forward def input_right_button if right_button_clicked? state.play = false state.current_step += 1 move_searches_one_step_forward end end # These methods detect when the buttons are clicked def left_button_clicked? inputs.mouse.point.inside_rect?(buttons.left) && inputs.mouse.up end def center_button_clicked? inputs.mouse.point.inside_rect?(buttons.center) && inputs.mouse.up end def right_button_clicked? inputs.mouse.point.inside_rect?(buttons.right) && inputs.mouse.up end # Signal that the user is going to be moving the slider # Is the mouse over the circle of the slider? def mouse_over_slider? circle_x = (slider.x - slider.offset) + (state.current_step * slider.spacing) circle_y = (slider.y - slider.offset) circle_rect = [circle_x, circle_y, 37, 37] inputs.mouse.point.inside_rect?(circle_rect) end # Signal that the user is going to be moving the star from the first grid def bfs_mouse_over_star? inputs.mouse.point.inside_rect?(bfs_scale_up(grid.star)) end # Signal that the user is going to be moving the star from the second grid def heuristic_mouse_over_star? inputs.mouse.point.inside_rect?(heuristic_scale_up(grid.star)) end # Signal that the user is going to be moving the target from the first grid def bfs_mouse_over_target? inputs.mouse.point.inside_rect?(bfs_scale_up(grid.target)) end # Signal that the user is going to be moving the target from the second grid def heuristic_mouse_over_target? inputs.mouse.point.inside_rect?(heuristic_scale_up(grid.target)) end # Signal that the user is going to be removing walls from the first grid def bfs_mouse_over_wall? grid.walls.each_key do | wall | return true if inputs.mouse.point.inside_rect?(bfs_scale_up(wall)) end false end # Signal that the user is going to be removing walls from the second grid def heuristic_mouse_over_wall? grid.walls.each_key do | wall | return true if inputs.mouse.point.inside_rect?(heuristic_scale_up(wall)) end false end # Signal that the user is going to be adding walls from the first grid def bfs_mouse_over_grid? inputs.mouse.point.inside_rect?(bfs_scale_up(grid.rect)) end # Signal that the user is going to be adding walls from the second grid def heuristic_mouse_over_grid? inputs.mouse.point.inside_rect?(heuristic_scale_up(grid.rect)) end # This method is called when the user is editing the slider # It pauses the animation and moves the white circle to the closest integer point # on the slider # Changes the step of the search to be animated def process_input_slider state.play = false mouse_x = inputs.mouse.point.x # Bounds the mouse_x to the closest x value on the slider line mouse_x = slider.x if mouse_x < slider.x mouse_x = slider.x + slider.w if mouse_x > slider.x + slider.w # Sets the current search step to the one represented by the mouse x value # The slider's circle moves due to the render_slider method using anim_steps state.current_step = ((mouse_x - slider.x) / slider.spacing).to_i recalculate_searches end # Moves the star to the cell closest to the mouse in the first grid # Only resets the search if the star changes position # Called whenever the user is editing the star (puts mouse down on star) def process_input_bfs_star old_star = grid.star.clone unless bfs_cell_closest_to_mouse == grid.target grid.star = bfs_cell_closest_to_mouse end unless old_star == grid.star recalculate_searches end end # Moves the star to the cell closest to the mouse in the second grid # Only resets the search if the star changes position # Called whenever the user is editing the star (puts mouse down on star) def process_input_heuristic_star old_star = grid.star.clone unless heuristic_cell_closest_to_mouse == grid.target grid.star = heuristic_cell_closest_to_mouse end unless old_star == grid.star recalculate_searches end end # Moves the target to the grid closest to the mouse in the first grid # Only recalculate_searchess the search if the target changes position # Called whenever the user is editing the target (puts mouse down on target) def process_input_bfs_target old_target = grid.target.clone unless bfs_cell_closest_to_mouse == grid.star grid.target = bfs_cell_closest_to_mouse end unless old_target == grid.target recalculate_searches end end # Moves the target to the cell closest to the mouse in the second grid # Only recalculate_searchess the search if the target changes position # Called whenever the user is editing the target (puts mouse down on target) def process_input_heuristic_target old_target = grid.target.clone unless heuristic_cell_closest_to_mouse == grid.star grid.target = heuristic_cell_closest_to_mouse end unless old_target == grid.target recalculate_searches end end # Removes walls in the first grid that are under the cursor def process_input_bfs_remove_wall # The mouse needs to be inside the grid, because we only want to remove walls # the cursor is directly over # Recalculations should only occur when a wall is actually deleted if bfs_mouse_over_grid? if grid.walls.has_key?(bfs_cell_closest_to_mouse) grid.walls.delete(bfs_cell_closest_to_mouse) recalculate_searches end end end # Removes walls in the second grid that are under the cursor def process_input_heuristic_remove_wall # The mouse needs to be inside the grid, because we only want to remove walls # the cursor is directly over # Recalculations should only occur when a wall is actually deleted if heuristic_mouse_over_grid? if grid.walls.has_key?(heuristic_cell_closest_to_mouse) grid.walls.delete(heuristic_cell_closest_to_mouse) recalculate_searches end end end # Adds a wall in the first grid in the cell the mouse is over def process_input_bfs_add_wall if bfs_mouse_over_grid? unless grid.walls.has_key?(bfs_cell_closest_to_mouse) grid.walls[bfs_cell_closest_to_mouse] = true recalculate_searches end end end # Adds a wall in the second grid in the cell the mouse is over def process_input_heuristic_add_wall if heuristic_mouse_over_grid? unless grid.walls.has_key?(heuristic_cell_closest_to_mouse) grid.walls[heuristic_cell_closest_to_mouse] = true recalculate_searches end end end # When the user grabs the star and puts their cursor to the far right # and moves up and down, the star is supposed to move along the grid as well # Finding the cell closest to the mouse helps with this def bfs_cell_closest_to_mouse # Closest cell to the mouse in the first grid x = (inputs.mouse.point.x / grid.cell_size).to_i y = (inputs.mouse.point.y / grid.cell_size).to_i # Bound x and y to the grid x = grid.width - 1 if x > grid.width - 1 y = grid.height - 1 if y > grid.height - 1 # Return closest cell [x, y] end # When the user grabs the star and puts their cursor to the far right # and moves up and down, the star is supposed to move along the grid as well # Finding the cell closest to the mouse in the second grid helps with this def heuristic_cell_closest_to_mouse # Closest cell grid to the mouse in the second x = (inputs.mouse.point.x / grid.cell_size).to_i y = (inputs.mouse.point.y / grid.cell_size).to_i # Translate the cell to the first grid x -= grid.width + 1 # Bound x and y to the first grid x = 0 if x < 0 y = 0 if y < 0 x = grid.width - 1 if x > grid.width - 1 y = grid.height - 1 if y > grid.height - 1 # Return closest cell [x, y] end def recalculate_searches # Reset the searches bfs.came_from = {} bfs.frontier = [] bfs.path = [] heuristic.came_from = {} heuristic.frontier = [] heuristic.path = [] # Move the searches forward to the current step state.current_step.times { move_searches_one_step_forward } end def move_searches_one_step_forward bfs_one_step_forward heuristic_one_step_forward end def bfs_one_step_forward return if bfs.came_from.has_key?(grid.target) # Only runs at the beginning of the search as setup. if bfs.came_from.empty? bfs.frontier << grid.star bfs.came_from[grid.star] = nil end # A step in the search unless bfs.frontier.empty? # Takes the next frontier cell new_frontier = bfs.frontier.shift # For each of its neighbors adjacent_neighbors(new_frontier).each do |neighbor| # That have not been visited and are not walls unless bfs.came_from.has_key?(neighbor) || grid.walls.has_key?(neighbor) # Add them to the frontier and mark them as visited bfs.frontier << neighbor bfs.came_from[neighbor] = new_frontier end end end # Sort the frontier so that cells that are in a zigzag pattern are prioritized over those in an line # Comment this line and let a path generate to see the difference bfs.frontier = bfs.frontier.sort_by {| cell | proximity_to_star(cell) } # If the search found the target if bfs.came_from.has_key?(grid.target) # Calculate the path between the target and star bfs_calc_path end end # Calculates the path between the target and star for the breadth first search # Only called when the breadth first search finds the target def bfs_calc_path # Start from the target endpoint = grid.target # And the cell it came from next_endpoint = bfs.came_from[endpoint] while endpoint and next_endpoint # Draw a path between these two cells and store it path = get_path_between(endpoint, next_endpoint) bfs.path << path # And get the next pair of cells endpoint = next_endpoint next_endpoint = bfs.came_from[endpoint] # Continue till there are no more cells end end # Moves the heuristic search forward one step # Can be called from tick while the animation is playing # Can also be called when recalculating the searches after the user edited the grid def heuristic_one_step_forward # Stop the search if the target has been found return if heuristic.came_from.has_key?(grid.target) # If the search has not begun if heuristic.came_from.empty? # Setup the search to begin from the star heuristic.frontier << grid.star heuristic.came_from[grid.star] = nil end # One step in the heuristic search # Unless there are no more cells to explore from unless heuristic.frontier.empty? # Get the next cell to explore from new_frontier = heuristic.frontier.shift # For each of its neighbors adjacent_neighbors(new_frontier).each do |neighbor| # That have not been visited and are not walls unless heuristic.came_from.has_key?(neighbor) || grid.walls.has_key?(neighbor) # Add them to the frontier and mark them as visited heuristic.frontier << neighbor heuristic.came_from[neighbor] = new_frontier end end end # Sort the frontier so that cells that are in a zigzag pattern are prioritized over those in an line heuristic.frontier = heuristic.frontier.sort_by {| cell | proximity_to_star(cell) } # Sort the frontier so cells that are close to the target are then prioritized heuristic.frontier = heuristic.frontier.sort_by {| cell | heuristic_heuristic(cell) } # If the search found the target if heuristic.came_from.has_key?(grid.target) # Calculate the path between the target and star heuristic_calc_path end end # Returns one-dimensional absolute distance between cell and target # Returns a number to compare distances between cells and the target def heuristic_heuristic(cell) (grid.target.x - cell.x).abs + (grid.target.y - cell.y).abs end # Calculates the path between the target and star for the heuristic search # Only called when the heuristic search finds the target def heuristic_calc_path # Start from the target endpoint = grid.target # And the cell it came from next_endpoint = heuristic.came_from[endpoint] while endpoint and next_endpoint # Draw a path between these two cells and store it path = get_path_between(endpoint, next_endpoint) heuristic.path << path # And get the next pair of cells endpoint = next_endpoint next_endpoint = heuristic.came_from[endpoint] # Continue till there are no more cells end end # Returns a list of adjacent cells # Used to determine what the next cells to be added to the frontier are def adjacent_neighbors(cell) neighbors = [] # Gets all the valid neighbors into the array # From southern neighbor, clockwise neighbors << [cell.x , cell.y - 1] unless cell.y == 0 neighbors << [cell.x - 1, cell.y ] unless cell.x == 0 neighbors << [cell.x , cell.y + 1] unless cell.y == grid.height - 1 neighbors << [cell.x + 1, cell.y ] unless cell.x == grid.width - 1 neighbors end # Finds the vertical and horizontal distance of a cell from the star # and returns the larger value # This method is used to have a zigzag pattern in the rendered path # A cell that is [5, 5] from the star, # is explored before over a cell that is [0, 7] away. # So, if possible, the search tries to go diagonal (zigzag) first def proximity_to_star(cell) distance_x = (grid.star.x - cell.x).abs distance_y = (grid.star.y - cell.y).abs if distance_x > distance_y return distance_x else return distance_y end end # Methods that allow code to be more concise. Subdivides args.state, which is where all variables are stored. def grid state.grid end def buttons state.buttons end def slider state.slider end def bfs state.bfs end def heuristic state.heuristic end # Descriptive aliases for colors def default_color [221, 212, 213] # Light Brown end def wall_color [134, 134, 120] # Camo Green end def visited_color [204, 191, 179] # Dark Brown end def frontier_color [103, 136, 204] # Blue end def path_color [231, 230, 228] # Pastel White end def button_color [190, 190, 190] # Gray end end # Method that is called by DragonRuby periodically # Used for updating animations and calculations def tick args # Pressing r will reset the application if args.inputs.keyboard.key_down.r args.gtk.reset reset return end # Every tick, new args are passed, and the Breadth First Search tick is called $heuristic_with_walls ||= Heuristic_With_Walls.new(args) $heuristic_with_walls.args = args $heuristic_with_walls.tick end def reset $heuristic_with_walls = nil end13 Path Finding Algorithms - Heuristic With Walls - main.rb
# ./samples/13_path_finding_algorithms/07_heuristic_with_walls/app/main.rb # This program is inspired by https://www.redblobgames.com/pathfinding/a-star/introduction.html # The effectiveness of the Heuristic search algorithm is shown through this demonstration. # Notice that both searches find the shortest path # The heuristic search, however, explores less of the grid, and is therefore faster. # The heuristic search prioritizes searching cells that are closer to the target. # Make sure to look at the Heuristic with walls program to see some of the downsides of the heuristic algorithm. class Heuristic attr_gtk def tick defaults render input # If animation is playing, and max steps have not been reached # Move the search a step forward if state.play && state.current_step < state.max_steps # Variable that tells the program what step to recalculate up to state.current_step += 1 move_searches_one_step_forward end end def defaults # Variables to edit the size and appearance of the grid # Freely customizable to user's liking grid.width ||= 15 grid.height ||= 15 grid.cell_size ||= 40 grid.rect ||= [0, 0, grid.width, grid.height] grid.star ||= [0, 2] grid.target ||= [14, 12] grid.walls ||= { [2, 2] => true, [3, 2] => true, [4, 2] => true, [5, 2] => true, [6, 2] => true, [7, 2] => true, [8, 2] => true, [9, 2] => true, [10, 2] => true, [11, 2] => true, [12, 2] => true, [12, 3] => true, [12, 4] => true, [12, 5] => true, [12, 6] => true, [12, 7] => true, [12, 8] => true, [12, 9] => true, [12, 10] => true, [12, 11] => true, [12, 12] => true, [2, 12] => true, [3, 12] => true, [4, 12] => true, [5, 12] => true, [6, 12] => true, [7, 12] => true, [8, 12] => true, [9, 12] => true, [10, 12] => true, [11, 12] => true, [12, 12] => true } # There are no hills in the Heuristic Search Demo # What the user is currently editing on the grid # We store this value, because we want to remember the value even when # the user's cursor is no longer over what they're interacting with, but # they are still clicking down on the mouse. state.user_input ||= :none # These variables allow the breadth first search to take place # Came_from is a hash with a key of a cell and a value of the cell that was expanded from to find the key. # Used to prevent searching cells that have already been found # and to trace a path from the target back to the starting point. # Frontier is an array of cells to expand the search from. # The search is over when there are no more cells to search from. # Path stores the path from the target to the star, once the target has been found # It prevents calculating the path every tick. bfs.came_from ||= {} bfs.frontier ||= [] bfs.path ||= [] heuristic.came_from ||= {} heuristic.frontier ||= [] heuristic.path ||= [] # Stores which step of the animation is being rendered # When the user moves the star or messes with the walls, # the searches are recalculated up to this step # Unless the current step has a value unless state.current_step # Set the current step to 10 state.current_step = 10 # And calculate the searches up to step 10 recalculate_searches end # At some step the animation will end, # and further steps won't change anything (the whole grid will be explored) # This step is roughly the grid's width * height # When anim_steps equals max_steps no more calculations will occur # and the slider will be at the end state.max_steps = grid.width * grid.height # Whether the animation should play or not # If true, every tick moves anim_steps forward one # Pressing the stepwise animation buttons will pause the animation # An if statement instead of the ||= operator is used for assigning a boolean value. # The || operator does not differentiate between nil and false. if state.play == nil state.play = false end # Store the rects of the buttons that control the animation # They are here for user customization # Editing these might require recentering the text inside them # Those values can be found in the render_button methods buttons.left = [470, 600, 50, 50] buttons.center = [520, 600, 200, 50] buttons.right = [720, 600, 50, 50] # The variables below are related to the slider # They allow the user to customize them # They also give a central location for the render and input methods to get # information from # x & y are the coordinates of the leftmost part of the slider line slider.x = 440 slider.y = 675 # This is the width of the line slider.w = 360 # This is the offset for the circle # Allows the center of the circle to be on the line, # as opposed to the upper right corner slider.offset = 20 # This is the spacing between each of the notches on the slider # Notches are places where the circle can rest on the slider line # There needs to be a notch for each step before the maximum number of steps slider.spacing = slider.w.to_f / state.max_steps.to_f end # All methods with render draw stuff on the screen # UI has buttons, the slider, and labels # The search specific rendering occurs in the respective methods def render render_ui render_bfs render_heuristic end def render_ui render_buttons render_slider render_labels end def render_buttons render_left_button render_center_button render_right_button end def render_bfs render_bfs_grid render_bfs_star render_bfs_target render_bfs_visited render_bfs_walls render_bfs_frontier render_bfs_path end def render_heuristic render_heuristic_grid render_heuristic_star render_heuristic_target render_heuristic_visited render_heuristic_walls render_heuristic_frontier render_heuristic_path end # This method handles user input every tick def input # Check and handle button input input_buttons # If the mouse was lifted this tick if inputs.mouse.up # Set current input to none state.user_input = :none end # If the mouse was clicked this tick if inputs.mouse.down # Determine what the user is editing and appropriately edit the state.user_input variable determine_input end # Process user input based on user_input variable and current mouse position process_input end # Determines what the user is editing # This method is called when the mouse is clicked down def determine_input if mouse_over_slider? state.user_input = :slider # If the mouse is over the star in the first grid elsif bfs_mouse_over_star? # The user is editing the star from the first grid state.user_input = :bfs_star # If the mouse is over the star in the second grid elsif heuristic_mouse_over_star? # The user is editing the star from the second grid state.user_input = :heuristic_star # If the mouse is over the target in the first grid elsif bfs_mouse_over_target? # The user is editing the target from the first grid state.user_input = :bfs_target # If the mouse is over the target in the second grid elsif heuristic_mouse_over_target? # The user is editing the target from the second grid state.user_input = :heuristic_target # If the mouse is over a wall in the first grid elsif bfs_mouse_over_wall? # The user is removing a wall from the first grid state.user_input = :bfs_remove_wall # If the mouse is over a wall in the second grid elsif heuristic_mouse_over_wall? # The user is removing a wall from the second grid state.user_input = :heuristic_remove_wall # If the mouse is over the first grid elsif bfs_mouse_over_grid? # The user is adding a wall from the first grid state.user_input = :bfs_add_wall # If the mouse is over the second grid elsif heuristic_mouse_over_grid? # The user is adding a wall from the second grid state.user_input = :heuristic_add_wall end end # Processes click and drag based on what the user is currently dragging def process_input if state.user_input == :slider process_input_slider elsif state.user_input == :bfs_star process_input_bfs_star elsif state.user_input == :heuristic_star process_input_heuristic_star elsif state.user_input == :bfs_target process_input_bfs_target elsif state.user_input == :heuristic_target process_input_heuristic_target elsif state.user_input == :bfs_remove_wall process_input_bfs_remove_wall elsif state.user_input == :heuristic_remove_wall process_input_heuristic_remove_wall elsif state.user_input == :bfs_add_wall process_input_bfs_add_wall elsif state.user_input == :heuristic_add_wall process_input_heuristic_add_wall end end def render_slider # Using primitives hides the line under the white circle of the slider # Draws the line outputs.primitives << [slider.x, slider.y, slider.x + slider.w, slider.y].line # The circle needs to be offset so that the center of the circle # overlaps the line instead of the upper right corner of the circle # The circle's x value is also moved based on the current seach step circle_x = (slider.x - slider.offset) + (state.current_step * slider.spacing) circle_y = (slider.y - slider.offset) circle_rect = [circle_x, circle_y, 37, 37] outputs.primitives << [circle_rect, 'circle-white.png'].sprite end def render_labels outputs.labels << [205, 625, "Breadth First Search"] outputs.labels << [820, 625, "Heuristic Best-First Search"] end def render_left_button # Draws the button_color button, and a black border # The border separates the buttons visually outputs.solids << [buttons.left, button_color] outputs.borders << [buttons.left] # Renders an explanatory label in the center of the button # Explains to the user what the button does # If the button size is changed, the label might need to be edited as well # to keep the label in the center of the button label_x = buttons.left.x + 20 label_y = buttons.left.y + 35 outputs.labels << [label_x, label_y, "<"] end def render_center_button # Draws the button_color button, and a black border # The border separates the buttons visually outputs.solids << [buttons.center, button_color] outputs.borders << [buttons.center] # Renders an explanatory label in the center of the button # Explains to the user what the button does # If the button size is changed, the label might need to be edited as well # to keep the label in the center of the button label_x = buttons.center.x + 37 label_y = buttons.center.y + 35 label_text = state.play ? "Pause Animation" : "Play Animation" outputs.labels << [label_x, label_y, label_text] end def render_right_button # Draws the button_color button, and a black border # The border separates the buttons visually outputs.solids << [buttons.right, button_color] outputs.borders << [buttons.right] # Renders an explanatory label in the center of the button # Explains to the user what the button does label_x = buttons.right.x + 20 label_y = buttons.right.y + 35 outputs.labels << [label_x, label_y, ">"] end def render_bfs_grid # A large rect the size of the grid outputs.solids << [bfs_scale_up(grid.rect), default_color] # The vertical grid lines for x in 0..grid.width outputs.lines << bfs_vertical_line(x) end # The horizontal grid lines for y in 0..grid.height outputs.lines << bfs_horizontal_line(y) end end def render_heuristic_grid # A large rect the size of the grid outputs.solids << [heuristic_scale_up(grid.rect), default_color] # The vertical grid lines for x in 0..grid.width outputs.lines << heuristic_vertical_line(x) end # The horizontal grid lines for y in 0..grid.height outputs.lines << heuristic_horizontal_line(y) end end # Returns a vertical line for a column of the first grid def bfs_vertical_line column bfs_scale_up([column, 0, column, grid.height]) end # Returns a horizontal line for a column of the first grid def bfs_horizontal_line row bfs_scale_up([0, row, grid.width, row]) end # Returns a vertical line for a column of the second grid def heuristic_vertical_line column bfs_scale_up([column + grid.width + 1, 0, column + grid.width + 1, grid.height]) end # Returns a horizontal line for a column of the second grid def heuristic_horizontal_line row bfs_scale_up([grid.width + 1, row, grid.width + grid.width + 1, row]) end # Renders the star on the first grid def render_bfs_star outputs.sprites << [bfs_scale_up(grid.star), 'star.png'] end # Renders the star on the second grid def render_heuristic_star outputs.sprites << [heuristic_scale_up(grid.star), 'star.png'] end # Renders the target on the first grid def render_bfs_target outputs.sprites << [bfs_scale_up(grid.target), 'target.png'] end # Renders the target on the second grid def render_heuristic_target outputs.sprites << [heuristic_scale_up(grid.target), 'target.png'] end # Renders the walls on the first grid def render_bfs_walls grid.walls.each_key do | wall | outputs.solids << [bfs_scale_up(wall), wall_color] end end # Renders the walls on the second grid def render_heuristic_walls grid.walls.each_key do | wall | outputs.solids << [heuristic_scale_up(wall), wall_color] end end # Renders the visited cells on the first grid def render_bfs_visited bfs.came_from.each_key do | visited_cell | outputs.solids << [bfs_scale_up(visited_cell), visited_color] end end # Renders the visited cells on the second grid def render_heuristic_visited heuristic.came_from.each_key do | visited_cell | outputs.solids << [heuristic_scale_up(visited_cell), visited_color] end end # Renders the frontier cells on the first grid def render_bfs_frontier bfs.frontier.each do | frontier_cell | outputs.solids << [bfs_scale_up(frontier_cell), frontier_color, 200] end end # Renders the frontier cells on the second grid def render_heuristic_frontier heuristic.frontier.each do | frontier_cell | outputs.solids << [heuristic_scale_up(frontier_cell), frontier_color, 200] end end # Renders the path found by the breadth first search on the first grid def render_bfs_path bfs.path.each do | path | outputs.solids << [bfs_scale_up(path), path_color] end end # Renders the path found by the heuristic search on the second grid def render_heuristic_path heuristic.path.each do | path | outputs.solids << [heuristic_scale_up(path), path_color] end end # Returns the rect for the path between two cells based on their relative positions def get_path_between(cell_one, cell_two) path = [] # If cell one is above cell two if cell_one.x == cell_two.x and cell_one.y > cell_two.y # Path starts from the center of cell two and moves upward to the center of cell one path = [cell_two.x + 0.3, cell_two.y + 0.3, 0.4, 1.4] # If cell one is below cell two elsif cell_one.x == cell_two.x and cell_one.y < cell_two.y # Path starts from the center of cell one and moves upward to the center of cell two path = [cell_one.x + 0.3, cell_one.y + 0.3, 0.4, 1.4] # If cell one is to the left of cell two elsif cell_one.x > cell_two.x and cell_one.y == cell_two.y # Path starts from the center of cell two and moves rightward to the center of cell one path = [cell_two.x + 0.3, cell_two.y + 0.3, 1.4, 0.4] # If cell one is to the right of cell two elsif cell_one.x < cell_two.x and cell_one.y == cell_two.y # Path starts from the center of cell one and moves rightward to the center of cell two path = [cell_one.x + 0.3, cell_one.y + 0.3, 1.4, 0.4] end path end # In code, the cells are represented as 1x1 rectangles # When drawn, the cells are larger than 1x1 rectangles # This method is used to scale up cells, and lines # Objects are scaled up according to the grid.cell_size variable # This allows for easy customization of the visual scale of the grid # This method scales up cells for the first grid def bfs_scale_up(cell) # Prevents the original value of cell from being edited cell = cell.clone # If cell is just an x and y coordinate if cell.size == 2 # Add a width and height of 1 cell << 1 cell << 1 end # Scale all the values up cell.map! { |value| value * grid.cell_size } # Returns the scaled up cell cell end # Translates the given cell grid.width + 1 to the right and then scales up # Used to draw cells for the second grid # This method does not work for lines, # so separate methods exist for the grid lines def heuristic_scale_up(cell) # Prevents the original value of cell from being edited cell = cell.clone # Translates the cell to the second grid equivalent cell.x += grid.width + 1 # Proceeds as if scaling up for the first grid bfs_scale_up(cell) end # Checks and handles input for the buttons # Called when the mouse is lifted def input_buttons input_left_button input_center_button input_right_button end # Checks if the previous step button is clicked # If it is, it pauses the animation and moves the search one step backward def input_left_button if left_button_clicked? state.play = false state.current_step -= 1 recalculate_searches end end # Controls the play/pause button # Inverses whether the animation is playing or not when clicked def input_center_button if center_button_clicked? || inputs.keyboard.key_down.space state.play = !state.play end end # Checks if the next step button is clicked # If it is, it pauses the animation and moves the search one step forward def input_right_button if right_button_clicked? state.play = false state.current_step += 1 move_searches_one_step_forward end end # These methods detect when the buttons are clicked def left_button_clicked? inputs.mouse.point.inside_rect?(buttons.left) && inputs.mouse.up end def center_button_clicked? inputs.mouse.point.inside_rect?(buttons.center) && inputs.mouse.up end def right_button_clicked? inputs.mouse.point.inside_rect?(buttons.right) && inputs.mouse.up end # Signal that the user is going to be moving the slider # Is the mouse over the circle of the slider? def mouse_over_slider? circle_x = (slider.x - slider.offset) + (state.current_step * slider.spacing) circle_y = (slider.y - slider.offset) circle_rect = [circle_x, circle_y, 37, 37] inputs.mouse.point.inside_rect?(circle_rect) end # Signal that the user is going to be moving the star from the first grid def bfs_mouse_over_star? inputs.mouse.point.inside_rect?(bfs_scale_up(grid.star)) end # Signal that the user is going to be moving the star from the second grid def heuristic_mouse_over_star? inputs.mouse.point.inside_rect?(heuristic_scale_up(grid.star)) end # Signal that the user is going to be moving the target from the first grid def bfs_mouse_over_target? inputs.mouse.point.inside_rect?(bfs_scale_up(grid.target)) end # Signal that the user is going to be moving the target from the second grid def heuristic_mouse_over_target? inputs.mouse.point.inside_rect?(heuristic_scale_up(grid.target)) end # Signal that the user is going to be removing walls from the first grid def bfs_mouse_over_wall? grid.walls.each_key do | wall | return true if inputs.mouse.point.inside_rect?(bfs_scale_up(wall)) end false end # Signal that the user is going to be removing walls from the second grid def heuristic_mouse_over_wall? grid.walls.each_key do | wall | return true if inputs.mouse.point.inside_rect?(heuristic_scale_up(wall)) end false end # Signal that the user is going to be adding walls from the first grid def bfs_mouse_over_grid? inputs.mouse.point.inside_rect?(bfs_scale_up(grid.rect)) end # Signal that the user is going to be adding walls from the second grid def heuristic_mouse_over_grid? inputs.mouse.point.inside_rect?(heuristic_scale_up(grid.rect)) end # This method is called when the user is editing the slider # It pauses the animation and moves the white circle to the closest integer point # on the slider # Changes the step of the search to be animated def process_input_slider state.play = false mouse_x = inputs.mouse.point.x # Bounds the mouse_x to the closest x value on the slider line mouse_x = slider.x if mouse_x < slider.x mouse_x = slider.x + slider.w if mouse_x > slider.x + slider.w # Sets the current search step to the one represented by the mouse x value # The slider's circle moves due to the render_slider method using anim_steps state.current_step = ((mouse_x - slider.x) / slider.spacing).to_i recalculate_searches end # Moves the star to the cell closest to the mouse in the first grid # Only resets the search if the star changes position # Called whenever the user is editing the star (puts mouse down on star) def process_input_bfs_star old_star = grid.star.clone unless bfs_cell_closest_to_mouse == grid.target grid.star = bfs_cell_closest_to_mouse end unless old_star == grid.star recalculate_searches end end # Moves the star to the cell closest to the mouse in the second grid # Only resets the search if the star changes position # Called whenever the user is editing the star (puts mouse down on star) def process_input_heuristic_star old_star = grid.star.clone unless heuristic_cell_closest_to_mouse == grid.target grid.star = heuristic_cell_closest_to_mouse end unless old_star == grid.star recalculate_searches end end # Moves the target to the grid closest to the mouse in the first grid # Only recalculate_searchess the search if the target changes position # Called whenever the user is editing the target (puts mouse down on target) def process_input_bfs_target old_target = grid.target.clone unless bfs_cell_closest_to_mouse == grid.star grid.target = bfs_cell_closest_to_mouse end unless old_target == grid.target recalculate_searches end end # Moves the target to the cell closest to the mouse in the second grid # Only recalculate_searchess the search if the target changes position # Called whenever the user is editing the target (puts mouse down on target) def process_input_heuristic_target old_target = grid.target.clone unless heuristic_cell_closest_to_mouse == grid.star grid.target = heuristic_cell_closest_to_mouse end unless old_target == grid.target recalculate_searches end end # Removes walls in the first grid that are under the cursor def process_input_bfs_remove_wall # The mouse needs to be inside the grid, because we only want to remove walls # the cursor is directly over # Recalculations should only occur when a wall is actually deleted if bfs_mouse_over_grid? if grid.walls.has_key?(bfs_cell_closest_to_mouse) grid.walls.delete(bfs_cell_closest_to_mouse) recalculate_searches end end end # Removes walls in the second grid that are under the cursor def process_input_heuristic_remove_wall # The mouse needs to be inside the grid, because we only want to remove walls # the cursor is directly over # Recalculations should only occur when a wall is actually deleted if heuristic_mouse_over_grid? if grid.walls.has_key?(heuristic_cell_closest_to_mouse) grid.walls.delete(heuristic_cell_closest_to_mouse) recalculate_searches end end end # Adds a wall in the first grid in the cell the mouse is over def process_input_bfs_add_wall if bfs_mouse_over_grid? unless grid.walls.has_key?(bfs_cell_closest_to_mouse) grid.walls[bfs_cell_closest_to_mouse] = true recalculate_searches end end end # Adds a wall in the second grid in the cell the mouse is over def process_input_heuristic_add_wall if heuristic_mouse_over_grid? unless grid.walls.has_key?(heuristic_cell_closest_to_mouse) grid.walls[heuristic_cell_closest_to_mouse] = true recalculate_searches end end end # When the user grabs the star and puts their cursor to the far right # and moves up and down, the star is supposed to move along the grid as well # Finding the cell closest to the mouse helps with this def bfs_cell_closest_to_mouse # Closest cell to the mouse in the first grid x = (inputs.mouse.point.x / grid.cell_size).to_i y = (inputs.mouse.point.y / grid.cell_size).to_i # Bound x and y to the grid x = grid.width - 1 if x > grid.width - 1 y = grid.height - 1 if y > grid.height - 1 # Return closest cell [x, y] end # When the user grabs the star and puts their cursor to the far right # and moves up and down, the star is supposed to move along the grid as well # Finding the cell closest to the mouse in the second grid helps with this def heuristic_cell_closest_to_mouse # Closest cell grid to the mouse in the second x = (inputs.mouse.point.x / grid.cell_size).to_i y = (inputs.mouse.point.y / grid.cell_size).to_i # Translate the cell to the first grid x -= grid.width + 1 # Bound x and y to the first grid x = 0 if x < 0 y = 0 if y < 0 x = grid.width - 1 if x > grid.width - 1 y = grid.height - 1 if y > grid.height - 1 # Return closest cell [x, y] end def recalculate_searches # Reset the searches bfs.came_from = {} bfs.frontier = [] bfs.path = [] heuristic.came_from = {} heuristic.frontier = [] heuristic.path = [] # Move the searches forward to the current step state.current_step.times { move_searches_one_step_forward } end def move_searches_one_step_forward bfs_one_step_forward heuristic_one_step_forward end def bfs_one_step_forward return if bfs.came_from.has_key?(grid.target) # Only runs at the beginning of the search as setup. if bfs.came_from.empty? bfs.frontier << grid.star bfs.came_from[grid.star] = nil end # A step in the search unless bfs.frontier.empty? # Takes the next frontier cell new_frontier = bfs.frontier.shift # For each of its neighbors adjacent_neighbors(new_frontier).each do |neighbor| # That have not been visited and are not walls unless bfs.came_from.has_key?(neighbor) || grid.walls.has_key?(neighbor) # Add them to the frontier and mark them as visited bfs.frontier << neighbor bfs.came_from[neighbor] = new_frontier end end end # Sort the frontier so that cells that are in a zigzag pattern are prioritized over those in an line # Comment this line and let a path generate to see the difference bfs.frontier = bfs.frontier.sort_by {| cell | proximity_to_star(cell) } # If the search found the target if bfs.came_from.has_key?(grid.target) # Calculate the path between the target and star bfs_calc_path end end # Calculates the path between the target and star for the breadth first search # Only called when the breadth first search finds the target def bfs_calc_path # Start from the target endpoint = grid.target # And the cell it came from next_endpoint = bfs.came_from[endpoint] while endpoint and next_endpoint # Draw a path between these two cells and store it path = get_path_between(endpoint, next_endpoint) bfs.path << path # And get the next pair of cells endpoint = next_endpoint next_endpoint = bfs.came_from[endpoint] # Continue till there are no more cells end end # Moves the heuristic search forward one step # Can be called from tick while the animation is playing # Can also be called when recalculating the searches after the user edited the grid def heuristic_one_step_forward # Stop the search if the target has been found return if heuristic.came_from.has_key?(grid.target) # If the search has not begun if heuristic.came_from.empty? # Setup the search to begin from the star heuristic.frontier << grid.star heuristic.came_from[grid.star] = nil end # One step in the heuristic search # Unless there are no more cells to explore from unless heuristic.frontier.empty? # Get the next cell to explore from new_frontier = heuristic.frontier.shift # For each of its neighbors adjacent_neighbors(new_frontier).each do |neighbor| # That have not been visited and are not walls unless heuristic.came_from.has_key?(neighbor) || grid.walls.has_key?(neighbor) # Add them to the frontier and mark them as visited heuristic.frontier << neighbor heuristic.came_from[neighbor] = new_frontier end end end # Sort the frontier so that cells that are in a zigzag pattern are prioritized over those in an line heuristic.frontier = heuristic.frontier.sort_by {| cell | proximity_to_star(cell) } # Sort the frontier so cells that are close to the target are then prioritized heuristic.frontier = heuristic.frontier.sort_by {| cell | heuristic_heuristic(cell) } # If the search found the target if heuristic.came_from.has_key?(grid.target) # Calculate the path between the target and star heuristic_calc_path end end # Returns one-dimensional absolute distance between cell and target # Returns a number to compare distances between cells and the target def heuristic_heuristic(cell) (grid.target.x - cell.x).abs + (grid.target.y - cell.y).abs end # Calculates the path between the target and star for the heuristic search # Only called when the heuristic search finds the target def heuristic_calc_path # Start from the target endpoint = grid.target # And the cell it came from next_endpoint = heuristic.came_from[endpoint] while endpoint and next_endpoint # Draw a path between these two cells and store it path = get_path_between(endpoint, next_endpoint) heuristic.path << path # And get the next pair of cells endpoint = next_endpoint next_endpoint = heuristic.came_from[endpoint] # Continue till there are no more cells end end # Returns a list of adjacent cells # Used to determine what the next cells to be added to the frontier are def adjacent_neighbors(cell) neighbors = [] # Gets all the valid neighbors into the array # From southern neighbor, clockwise neighbors << [cell.x , cell.y - 1] unless cell.y == 0 neighbors << [cell.x - 1, cell.y ] unless cell.x == 0 neighbors << [cell.x , cell.y + 1] unless cell.y == grid.height - 1 neighbors << [cell.x + 1, cell.y ] unless cell.x == grid.width - 1 neighbors end # Finds the vertical and horizontal distance of a cell from the star # and returns the larger value # This method is used to have a zigzag pattern in the rendered path # A cell that is [5, 5] from the star, # is explored before over a cell that is [0, 7] away. # So, if possible, the search tries to go diagonal (zigzag) first def proximity_to_star(cell) distance_x = (grid.star.x - cell.x).abs distance_y = (grid.star.y - cell.y).abs if distance_x > distance_y return distance_x else return distance_y end end # Methods that allow code to be more concise. Subdivides args.state, which is where all variables are stored. def grid state.grid end def buttons state.buttons end def slider state.slider end def bfs state.bfs end def heuristic state.heuristic end # Descriptive aliases for colors def default_color [221, 212, 213] # Light Brown end def wall_color [134, 134, 120] # Camo Green end def visited_color [204, 191, 179] # Dark Brown end def frontier_color [103, 136, 204] # Blue end def path_color [231, 230, 228] # Pastel White end def button_color [190, 190, 190] # Gray end end # Method that is called by DragonRuby periodically # Used for updating animations and calculations def tick args # Pressing r will reset the application if args.inputs.keyboard.key_down.r args.gtk.reset reset return end # Every tick, new args are passed, and the Breadth First Search tick is called $heuristic ||= Heuristic.new(args) $heuristic.args = args $heuristic.tick end def reset $heuristic = nil end13 Path Finding Algorithms - A Star - main.rb
# ./samples/13_path_finding_algorithms/08_a_star/app/main.rb # This program is inspired by https://www.redblobgames.com/pathfinding/a-star/introduction.html # The A* Search works by incorporating both the distance from the starting point # and the distance from the target in its heurisitic. # It tends to find the correct (shortest) path even when the Greedy Best-First Search does not, # and it explores less of the grid, and is therefore faster, than Dijkstra's Search. class A_Star_Algorithm attr_gtk def tick defaults render input if dijkstra.came_from.empty? calc_searches end end def defaults # Variables to edit the size and appearance of the grid # Freely customizable to user's liking grid.width ||= 15 grid.height ||= 15 grid.cell_size ||= 27 grid.rect ||= [0, 0, grid.width, grid.height] grid.star ||= [0, 2] grid.target ||= [11, 13] grid.walls ||= { [2, 2] => true, [3, 2] => true, [4, 2] => true, [5, 2] => true, [6, 2] => true, [7, 2] => true, [8, 2] => true, [9, 2] => true, [10, 2] => true, [11, 2] => true, [12, 2] => true, [12, 3] => true, [12, 4] => true, [12, 5] => true, [12, 6] => true, [12, 7] => true, [12, 8] => true, [12, 9] => true, [12, 10] => true, [12, 11] => true, [12, 12] => true, [5, 12] => true, [6, 12] => true, [7, 12] => true, [8, 12] => true, [9, 12] => true, [10, 12] => true, [11, 12] => true, [12, 12] => true } # What the user is currently editing on the grid # We store this value, because we want to remember the value even when # the user's cursor is no longer over what they're interacting with, but # they are still clicking down on the mouse. state.user_input ||= :none # These variables allow the breadth first search to take place # Came_from is a hash with a key of a cell and a value of the cell that was expanded from to find the key. # Used to prevent searching cells that have already been found # and to trace a path from the target back to the starting point. # Frontier is an array of cells to expand the search from. # The search is over when there are no more cells to search from. # Path stores the path from the target to the star, once the target has been found # It prevents calculating the path every tick. dijkstra.came_from ||= {} dijkstra.cost_so_far ||= {} dijkstra.frontier ||= [] dijkstra.path ||= [] greedy.came_from ||= {} greedy.frontier ||= [] greedy.path ||= [] a_star.frontier ||= [] a_star.came_from ||= {} a_star.path ||= [] end # All methods with render draw stuff on the screen # UI has buttons, the slider, and labels # The search specific rendering occurs in the respective methods def render render_labels render_dijkstra render_greedy render_a_star end def render_labels outputs.labels << [150, 450, "Dijkstra's"] outputs.labels << [550, 450, "Greedy Best-First"] outputs.labels << [1025, 450, "A* Search"] end def render_dijkstra render_dijkstra_grid render_dijkstra_star render_dijkstra_target render_dijkstra_visited render_dijkstra_walls render_dijkstra_path end def render_greedy render_greedy_grid render_greedy_star render_greedy_target render_greedy_visited render_greedy_walls render_greedy_path end def render_a_star render_a_star_grid render_a_star_star render_a_star_target render_a_star_visited render_a_star_walls render_a_star_path end # This method handles user input every tick def input # If the mouse was lifted this tick if inputs.mouse.up # Set current input to none state.user_input = :none end # If the mouse was clicked this tick if inputs.mouse.down # Determine what the user is editing and appropriately edit the state.user_input variable determine_input end # Process user input based on user_input variable and current mouse position process_input end # Determines what the user is editing # This method is called when the mouse is clicked down def determine_input # If the mouse is over the star in the first grid if dijkstra_mouse_over_star? # The user is editing the star from the first grid state.user_input = :dijkstra_star # If the mouse is over the star in the second grid elsif greedy_mouse_over_star? # The user is editing the star from the second grid state.user_input = :greedy_star # If the mouse is over the star in the third grid elsif a_star_mouse_over_star? # The user is editing the star from the third grid state.user_input = :a_star_star # If the mouse is over the target in the first grid elsif dijkstra_mouse_over_target? # The user is editing the target from the first grid state.user_input = :dijkstra_target # If the mouse is over the target in the second grid elsif greedy_mouse_over_target? # The user is editing the target from the second grid state.user_input = :greedy_target # If the mouse is over the target in the third grid elsif a_star_mouse_over_target? # The user is editing the target from the third grid state.user_input = :a_star_target # If the mouse is over a wall in the first grid elsif dijkstra_mouse_over_wall? # The user is removing a wall from the first grid state.user_input = :dijkstra_remove_wall # If the mouse is over a wall in the second grid elsif greedy_mouse_over_wall? # The user is removing a wall from the second grid state.user_input = :greedy_remove_wall # If the mouse is over a wall in the third grid elsif a_star_mouse_over_wall? # The user is removing a wall from the third grid state.user_input = :a_star_remove_wall # If the mouse is over the first grid elsif dijkstra_mouse_over_grid? # The user is adding a wall from the first grid state.user_input = :dijkstra_add_wall # If the mouse is over the second grid elsif greedy_mouse_over_grid? # The user is adding a wall from the second grid state.user_input = :greedy_add_wall # If the mouse is over the third grid elsif a_star_mouse_over_grid? # The user is adding a wall from the third grid state.user_input = :a_star_add_wall end end # Processes click and drag based on what the user is currently dragging def process_input if state.user_input == :dijkstra_star process_input_dijkstra_star elsif state.user_input == :greedy_star process_input_greedy_star elsif state.user_input == :a_star_star process_input_a_star_star elsif state.user_input == :dijkstra_target process_input_dijkstra_target elsif state.user_input == :greedy_target process_input_greedy_target elsif state.user_input == :a_star_target process_input_a_star_target elsif state.user_input == :dijkstra_remove_wall process_input_dijkstra_remove_wall elsif state.user_input == :greedy_remove_wall process_input_greedy_remove_wall elsif state.user_input == :a_star_remove_wall process_input_a_star_remove_wall elsif state.user_input == :dijkstra_add_wall process_input_dijkstra_add_wall elsif state.user_input == :greedy_add_wall process_input_greedy_add_wall elsif state.user_input == :a_star_add_wall process_input_a_star_add_wall end end def render_dijkstra_grid # A large rect the size of the grid outputs.solids << [dijkstra_scale_up(grid.rect), default_color] # The vertical grid lines for x in 0..grid.width outputs.lines << dijkstra_vertical_line(x) end # The horizontal grid lines for y in 0..grid.height outputs.lines << dijkstra_horizontal_line(y) end end def render_greedy_grid # A large rect the size of the grid outputs.solids << [greedy_scale_up(grid.rect), default_color] # The vertical grid lines for x in 0..grid.width outputs.lines << greedy_vertical_line(x) end # The horizontal grid lines for y in 0..grid.height outputs.lines << greedy_horizontal_line(y) end end def render_a_star_grid # A large rect the size of the grid outputs.solids << [a_star_scale_up(grid.rect), default_color] # The vertical grid lines for x in 0..grid.width outputs.lines << a_star_vertical_line(x) end # The horizontal grid lines for y in 0..grid.height outputs.lines << a_star_horizontal_line(y) end end # Returns a vertical line for a column of the first grid def dijkstra_vertical_line column dijkstra_scale_up([column, 0, column, grid.height]) end # Returns a horizontal line for a column of the first grid def dijkstra_horizontal_line row dijkstra_scale_up([0, row, grid.width, row]) end # Returns a vertical line for a column of the second grid def greedy_vertical_line column dijkstra_scale_up([column + grid.width + 1, 0, column + grid.width + 1, grid.height]) end # Returns a horizontal line for a column of the second grid def greedy_horizontal_line row dijkstra_scale_up([grid.width + 1, row, grid.width + grid.width + 1, row]) end # Returns a vertical line for a column of the third grid def a_star_vertical_line column dijkstra_scale_up([column + (grid.width * 2) + 2, 0, column + (grid.width * 2) + 2, grid.height]) end # Returns a horizontal line for a column of the third grid def a_star_horizontal_line row dijkstra_scale_up([(grid.width * 2) + 2, row, (grid.width * 2) + grid.width + 2, row]) end # Renders the star on the first grid def render_dijkstra_star outputs.sprites << [dijkstra_scale_up(grid.star), 'star.png'] end # Renders the star on the second grid def render_greedy_star outputs.sprites << [greedy_scale_up(grid.star), 'star.png'] end # Renders the star on the third grid def render_a_star_star outputs.sprites << [a_star_scale_up(grid.star), 'star.png'] end # Renders the target on the first grid def render_dijkstra_target outputs.sprites << [dijkstra_scale_up(grid.target), 'target.png'] end # Renders the target on the second grid def render_greedy_target outputs.sprites << [greedy_scale_up(grid.target), 'target.png'] end # Renders the target on the third grid def render_a_star_target outputs.sprites << [a_star_scale_up(grid.target), 'target.png'] end # Renders the walls on the first grid def render_dijkstra_walls grid.walls.each_key do | wall | outputs.solids << [dijkstra_scale_up(wall), wall_color] end end # Renders the walls on the second grid def render_greedy_walls grid.walls.each_key do | wall | outputs.solids << [greedy_scale_up(wall), wall_color] end end # Renders the walls on the third grid def render_a_star_walls grid.walls.each_key do | wall | outputs.solids << [a_star_scale_up(wall), wall_color] end end # Renders the visited cells on the first grid def render_dijkstra_visited dijkstra.came_from.each_key do | visited_cell | outputs.solids << [dijkstra_scale_up(visited_cell), visited_color] end end # Renders the visited cells on the second grid def render_greedy_visited greedy.came_from.each_key do | visited_cell | outputs.solids << [greedy_scale_up(visited_cell), visited_color] end end # Renders the visited cells on the third grid def render_a_star_visited a_star.came_from.each_key do | visited_cell | outputs.solids << [a_star_scale_up(visited_cell), visited_color] end end # Renders the path found by the breadth first search on the first grid def render_dijkstra_path dijkstra.path.each do | path | outputs.solids << [dijkstra_scale_up(path), path_color] end end # Renders the path found by the greedy search on the second grid def render_greedy_path greedy.path.each do | path | outputs.solids << [greedy_scale_up(path), path_color] end end # Renders the path found by the a_star search on the third grid def render_a_star_path a_star.path.each do | path | outputs.solids << [a_star_scale_up(path), path_color] end end # Returns the rect for the path between two cells based on their relative positions def get_path_between(cell_one, cell_two) path = [] # If cell one is above cell two if cell_one.x == cell_two.x and cell_one.y > cell_two.y # Path starts from the center of cell two and moves upward to the center of cell one path = [cell_two.x + 0.3, cell_two.y + 0.3, 0.4, 1.4] # If cell one is below cell two elsif cell_one.x == cell_two.x and cell_one.y < cell_two.y # Path starts from the center of cell one and moves upward to the center of cell two path = [cell_one.x + 0.3, cell_one.y + 0.3, 0.4, 1.4] # If cell one is to the left of cell two elsif cell_one.x > cell_two.x and cell_one.y == cell_two.y # Path starts from the center of cell two and moves rightward to the center of cell one path = [cell_two.x + 0.3, cell_two.y + 0.3, 1.4, 0.4] # If cell one is to the right of cell two elsif cell_one.x < cell_two.x and cell_one.y == cell_two.y # Path starts from the center of cell one and moves rightward to the center of cell two path = [cell_one.x + 0.3, cell_one.y + 0.3, 1.4, 0.4] end path end # In code, the cells are represented as 1x1 rectangles # When drawn, the cells are larger than 1x1 rectangles # This method is used to scale up cells, and lines # Objects are scaled up according to the grid.cell_size variable # This allows for easy customization of the visual scale of the grid # This method scales up cells for the first grid def dijkstra_scale_up(cell) # Prevents the original value of cell from being edited cell = cell.clone # If cell is just an x and y coordinate if cell.size == 2 # Add a width and height of 1 cell << 1 cell << 1 end # Scale all the values up cell.map! { |value| value * grid.cell_size } # Returns the scaled up cell cell end # Translates the given cell grid.width + 1 to the right and then scales up # Used to draw cells for the second grid # This method does not work for lines, # so separate methods exist for the grid lines def greedy_scale_up(cell) # Prevents the original value of cell from being edited cell = cell.clone # Translates the cell to the second grid equivalent cell.x += grid.width + 1 # Proceeds as if scaling up for the first grid dijkstra_scale_up(cell) end # Translates the given cell (grid.width + 1) * 2 to the right and then scales up # Used to draw cells for the third grid # This method does not work for lines, # so separate methods exist for the grid lines def a_star_scale_up(cell) # Prevents the original value of cell from being edited cell = cell.clone # Translates the cell to the second grid equivalent cell.x += grid.width + 1 # Translates the cell to the third grid equivalent cell.x += grid.width + 1 # Proceeds as if scaling up for the first grid dijkstra_scale_up(cell) end # Signal that the user is going to be moving the star from the first grid def dijkstra_mouse_over_star? inputs.mouse.point.inside_rect?(dijkstra_scale_up(grid.star)) end # Signal that the user is going to be moving the star from the second grid def greedy_mouse_over_star? inputs.mouse.point.inside_rect?(greedy_scale_up(grid.star)) end # Signal that the user is going to be moving the star from the third grid def a_star_mouse_over_star? inputs.mouse.point.inside_rect?(a_star_scale_up(grid.star)) end # Signal that the user is going to be moving the target from the first grid def dijkstra_mouse_over_target? inputs.mouse.point.inside_rect?(dijkstra_scale_up(grid.target)) end # Signal that the user is going to be moving the target from the second grid def greedy_mouse_over_target? inputs.mouse.point.inside_rect?(greedy_scale_up(grid.target)) end # Signal that the user is going to be moving the target from the third grid def a_star_mouse_over_target? inputs.mouse.point.inside_rect?(a_star_scale_up(grid.target)) end # Signal that the user is going to be removing walls from the first grid def dijkstra_mouse_over_wall? grid.walls.each_key do | wall | return true if inputs.mouse.point.inside_rect?(dijkstra_scale_up(wall)) end false end # Signal that the user is going to be removing walls from the second grid def greedy_mouse_over_wall? grid.walls.each_key do | wall | return true if inputs.mouse.point.inside_rect?(greedy_scale_up(wall)) end false end # Signal that the user is going to be removing walls from the third grid def a_star_mouse_over_wall? grid.walls.each_key do | wall | return true if inputs.mouse.point.inside_rect?(a_star_scale_up(wall)) end false end # Signal that the user is going to be adding walls from the first grid def dijkstra_mouse_over_grid? inputs.mouse.point.inside_rect?(dijkstra_scale_up(grid.rect)) end # Signal that the user is going to be adding walls from the second grid def greedy_mouse_over_grid? inputs.mouse.point.inside_rect?(greedy_scale_up(grid.rect)) end # Signal that the user is going to be adding walls from the third grid def a_star_mouse_over_grid? inputs.mouse.point.inside_rect?(a_star_scale_up(grid.rect)) end # Moves the star to the cell closest to the mouse in the first grid # Only resets the search if the star changes position # Called whenever the user is editing the star (puts mouse down on star) def process_input_dijkstra_star old_star = grid.star.clone unless dijkstra_cell_closest_to_mouse == grid.target grid.star = dijkstra_cell_closest_to_mouse end unless old_star == grid.star reset_searches end end # Moves the star to the cell closest to the mouse in the second grid # Only resets the search if the star changes position # Called whenever the user is editing the star (puts mouse down on star) def process_input_greedy_star old_star = grid.star.clone unless greedy_cell_closest_to_mouse == grid.target grid.star = greedy_cell_closest_to_mouse end unless old_star == grid.star reset_searches end end # Moves the star to the cell closest to the mouse in the third grid # Only resets the search if the star changes position # Called whenever the user is editing the star (puts mouse down on star) def process_input_a_star_star old_star = grid.star.clone unless a_star_cell_closest_to_mouse == grid.target grid.star = a_star_cell_closest_to_mouse end unless old_star == grid.star reset_searches end end # Moves the target to the grid closest to the mouse in the first grid # Only reset_searchess the search if the target changes position # Called whenever the user is editing the target (puts mouse down on target) def process_input_dijkstra_target old_target = grid.target.clone unless dijkstra_cell_closest_to_mouse == grid.star grid.target = dijkstra_cell_closest_to_mouse end unless old_target == grid.target reset_searches end end # Moves the target to the cell closest to the mouse in the second grid # Only reset_searchess the search if the target changes position # Called whenever the user is editing the target (puts mouse down on target) def process_input_greedy_target old_target = grid.target.clone unless greedy_cell_closest_to_mouse == grid.star grid.target = greedy_cell_closest_to_mouse end unless old_target == grid.target reset_searches end end # Moves the target to the cell closest to the mouse in the third grid # Only reset_searchess the search if the target changes position # Called whenever the user is editing the target (puts mouse down on target) def process_input_a_star_target old_target = grid.target.clone unless a_star_cell_closest_to_mouse == grid.star grid.target = a_star_cell_closest_to_mouse end unless old_target == grid.target reset_searches end end # Removes walls in the first grid that are under the cursor def process_input_dijkstra_remove_wall # The mouse needs to be inside the grid, because we only want to remove walls # the cursor is directly over # Recalculations should only occur when a wall is actually deleted if dijkstra_mouse_over_grid? if grid.walls.has_key?(dijkstra_cell_closest_to_mouse) grid.walls.delete(dijkstra_cell_closest_to_mouse) reset_searches end end end # Removes walls in the second grid that are under the cursor def process_input_greedy_remove_wall # The mouse needs to be inside the grid, because we only want to remove walls # the cursor is directly over # Recalculations should only occur when a wall is actually deleted if greedy_mouse_over_grid? if grid.walls.has_key?(greedy_cell_closest_to_mouse) grid.walls.delete(greedy_cell_closest_to_mouse) reset_searches end end end # Removes walls in the third grid that are under the cursor def process_input_a_star_remove_wall # The mouse needs to be inside the grid, because we only want to remove walls # the cursor is directly over # Recalculations should only occur when a wall is actually deleted if a_star_mouse_over_grid? if grid.walls.has_key?(a_star_cell_closest_to_mouse) grid.walls.delete(a_star_cell_closest_to_mouse) reset_searches end end end # Adds a wall in the first grid in the cell the mouse is over def process_input_dijkstra_add_wall if dijkstra_mouse_over_grid? unless grid.walls.has_key?(dijkstra_cell_closest_to_mouse) grid.walls[dijkstra_cell_closest_to_mouse] = true reset_searches end end end # Adds a wall in the second grid in the cell the mouse is over def process_input_greedy_add_wall if greedy_mouse_over_grid? unless grid.walls.has_key?(greedy_cell_closest_to_mouse) grid.walls[greedy_cell_closest_to_mouse] = true reset_searches end end end # Adds a wall in the third grid in the cell the mouse is over def process_input_a_star_add_wall if a_star_mouse_over_grid? unless grid.walls.has_key?(a_star_cell_closest_to_mouse) grid.walls[a_star_cell_closest_to_mouse] = true reset_searches end end end # When the user grabs the star and puts their cursor to the far right # and moves up and down, the star is supposed to move along the grid as well # Finding the cell closest to the mouse helps with this def dijkstra_cell_closest_to_mouse # Closest cell to the mouse in the first grid x = (inputs.mouse.point.x / grid.cell_size).to_i y = (inputs.mouse.point.y / grid.cell_size).to_i # Bound x and y to the grid x = grid.width - 1 if x > grid.width - 1 y = grid.height - 1 if y > grid.height - 1 # Return closest cell [x, y] end # When the user grabs the star and puts their cursor to the far right # and moves up and down, the star is supposed to move along the grid as well # Finding the cell closest to the mouse in the second grid helps with this def greedy_cell_closest_to_mouse # Closest cell grid to the mouse in the second x = (inputs.mouse.point.x / grid.cell_size).to_i y = (inputs.mouse.point.y / grid.cell_size).to_i # Translate the cell to the first grid x -= grid.width + 1 # Bound x and y to the first grid x = 0 if x < 0 y = 0 if y < 0 x = grid.width - 1 if x > grid.width - 1 y = grid.height - 1 if y > grid.height - 1 # Return closest cell [x, y] end # When the user grabs the star and puts their cursor to the far right # and moves up and down, the star is supposed to move along the grid as well # Finding the cell closest to the mouse in the third grid helps with this def a_star_cell_closest_to_mouse # Closest cell grid to the mouse in the second x = (inputs.mouse.point.x / grid.cell_size).to_i y = (inputs.mouse.point.y / grid.cell_size).to_i # Translate the cell to the first grid x -= (grid.width + 1) * 2 # Bound x and y to the first grid x = 0 if x < 0 y = 0 if y < 0 x = grid.width - 1 if x > grid.width - 1 y = grid.height - 1 if y > grid.height - 1 # Return closest cell [x, y] end def reset_searches # Reset the searches dijkstra.came_from = {} dijkstra.cost_so_far = {} dijkstra.frontier = [] dijkstra.path = [] greedy.came_from = {} greedy.frontier = [] greedy.path = [] a_star.came_from = {} a_star.frontier = [] a_star.path = [] end def calc_searches calc_dijkstra calc_greedy calc_a_star # Move the searches forward to the current step # state.current_step.times { move_searches_one_step_forward } end def calc_dijkstra # Sets up the search to begin from the star dijkstra.frontier << grid.star dijkstra.came_from[grid.star] = nil dijkstra.cost_so_far[grid.star] = 0 # Until the target is found or there are no more cells to explore from until dijkstra.came_from.has_key?(grid.target) or dijkstra.frontier.empty? # Take the next frontier cell. The first element is the cell, the second is the priority. new_frontier = dijkstra.frontier.shift#[0] # For each of its neighbors adjacent_neighbors(new_frontier).each do | neighbor | # That have not been visited and are not walls unless dijkstra.came_from.has_key?(neighbor) or grid.walls.has_key?(neighbor) # Add them to the frontier and mark them as visited dijkstra.frontier << neighbor dijkstra.came_from[neighbor] = new_frontier dijkstra.cost_so_far[neighbor] = dijkstra.cost_so_far[new_frontier] + 1 end end # Sort the frontier so that cells that are in a zigzag pattern are prioritized over those in an line # Comment this line and let a path generate to see the difference dijkstra.frontier = dijkstra.frontier.sort_by {| cell | proximity_to_star(cell) } dijkstra.frontier = dijkstra.frontier.sort_by {| cell | dijkstra.cost_so_far[cell] } end # If the search found the target if dijkstra.came_from.has_key?(grid.target) # Calculate the path between the target and star dijkstra_calc_path end end def calc_greedy # Sets up the search to begin from the star greedy.frontier << grid.star greedy.came_from[grid.star] = nil # Until the target is found or there are no more cells to explore from until greedy.came_from.has_key?(grid.target) or greedy.frontier.empty? # Take the next frontier cell new_frontier = greedy.frontier.shift # For each of its neighbors adjacent_neighbors(new_frontier).each do | neighbor | # That have not been visited and are not walls unless greedy.came_from.has_key?(neighbor) or grid.walls.has_key?(neighbor) # Add them to the frontier and mark them as visited greedy.frontier << neighbor greedy.came_from[neighbor] = new_frontier end end # Sort the frontier so that cells that are in a zigzag pattern are prioritized over those in an line # Comment this line and let a path generate to see the difference greedy.frontier = greedy.frontier.sort_by {| cell | proximity_to_star(cell) } # Sort the frontier so cells that are close to the target are then prioritized greedy.frontier = greedy.frontier.sort_by {| cell | greedy_heuristic(cell) } end # If the search found the target if greedy.came_from.has_key?(grid.target) # Calculate the path between the target and star greedy_calc_path end end def calc_a_star # Setup the search to start from the star a_star.came_from[grid.star] = nil a_star.cost_so_far[grid.star] = 0 a_star.frontier << grid.star # Until there are no more cells to explore from or the search has found the target until a_star.frontier.empty? or a_star.came_from.has_key?(grid.target) # Get the next cell to expand from current_frontier = a_star.frontier.shift # For each of that cells neighbors adjacent_neighbors(current_frontier).each do | neighbor | # That have not been visited and are not walls unless a_star.came_from.has_key?(neighbor) or grid.walls.has_key?(neighbor) # Add them to the frontier and mark them as visited a_star.frontier << neighbor a_star.came_from[neighbor] = current_frontier a_star.cost_so_far[neighbor] = a_star.cost_so_far[current_frontier] + 1 end end # Sort the frontier so that cells that are in a zigzag pattern are prioritized over those in an line # Comment this line and let a path generate to see the difference a_star.frontier = a_star.frontier.sort_by {| cell | proximity_to_star(cell) } a_star.frontier = a_star.frontier.sort_by {| cell | a_star.cost_so_far[cell] + greedy_heuristic(cell) } end # If the search found the target if a_star.came_from.has_key?(grid.target) # Calculate the path between the target and star a_star_calc_path end end # Calculates the path between the target and star for the breadth first search # Only called when the breadth first search finds the target def dijkstra_calc_path # Start from the target endpoint = grid.target # And the cell it came from next_endpoint = dijkstra.came_from[endpoint] while endpoint and next_endpoint # Draw a path between these two cells and store it path = get_path_between(endpoint, next_endpoint) dijkstra.path << path # And get the next pair of cells endpoint = next_endpoint next_endpoint = dijkstra.came_from[endpoint] # Continue till there are no more cells end end # Returns one-dimensional absolute distance between cell and target # Returns a number to compare distances between cells and the target def greedy_heuristic(cell) (grid.target.x - cell.x).abs + (grid.target.y - cell.y).abs end # Calculates the path between the target and star for the greedy search # Only called when the greedy search finds the target def greedy_calc_path # Start from the target endpoint = grid.target # And the cell it came from next_endpoint = greedy.came_from[endpoint] while endpoint and next_endpoint # Draw a path between these two cells and store it path = get_path_between(endpoint, next_endpoint) greedy.path << path # And get the next pair of cells endpoint = next_endpoint next_endpoint = greedy.came_from[endpoint] # Continue till there are no more cells end end # Calculates the path between the target and star for the a_star search # Only called when the a_star search finds the target def a_star_calc_path # Start from the target endpoint = grid.target # And the cell it came from next_endpoint = a_star.came_from[endpoint] while endpoint and next_endpoint # Draw a path between these two cells and store it path = get_path_between(endpoint, next_endpoint) a_star.path << path # And get the next pair of cells endpoint = next_endpoint next_endpoint = a_star.came_from[endpoint] # Continue till there are no more cells end end # Returns a list of adjacent cells # Used to determine what the next cells to be added to the frontier are def adjacent_neighbors(cell) neighbors = [] # Gets all the valid neighbors into the array # From southern neighbor, clockwise neighbors << [cell.x , cell.y - 1] unless cell.y == 0 neighbors << [cell.x - 1, cell.y ] unless cell.x == 0 neighbors << [cell.x , cell.y + 1] unless cell.y == grid.height - 1 neighbors << [cell.x + 1, cell.y ] unless cell.x == grid.width - 1 neighbors end # Finds the vertical and horizontal distance of a cell from the star # and returns the larger value # This method is used to have a zigzag pattern in the rendered path # A cell that is [5, 5] from the star, # is explored before over a cell that is [0, 7] away. # So, if possible, the search tries to go diagonal (zigzag) first def proximity_to_star(cell) distance_x = (grid.star.x - cell.x).abs distance_y = (grid.star.y - cell.y).abs if distance_x > distance_y return distance_x else return distance_y end end # Methods that allow code to be more concise. Subdivides args.state, which is where all variables are stored. def grid state.grid end def dijkstra state.dijkstra end def greedy state.greedy end def a_star state.a_star end # Descriptive aliases for colors def default_color [221, 212, 213] # Light Brown end def wall_color [134, 134, 120] # Camo Green end def visited_color [204, 191, 179] # Dark Brown end def path_color [231, 230, 228] # Pastel White end def button_color [190, 190, 190] # Gray end end # Method that is called by DragonRuby periodically # Used for updating animations and calculations def tick args # Pressing r will reset the application if args.inputs.keyboard.key_down.r args.gtk.reset reset return end # Every tick, new args are passed, and the Breadth First Search tick is called $a_star_algorithm ||= A_Star_Algorithm.new(args) $a_star_algorithm.args = args $a_star_algorithm.tick end def reset $a_star_algorithm = nil end3d - 3d Cube - main.rb
# ./samples/99_genre_3d/01_3d_cube/app/main.rb STARTX = 0.0 STARTY = 0.0 ENDY = 20.0 ENDX = 20.0 SPINPOINT = 10 SPINDURATION = 400 POINTSIZE = 8 BOXDEPTH = 40 YAW = 1 DISTANCE = 10 def tick args args.outputs.background_color = [0, 0, 0] a = Math.sin(args.state.tick_count / SPINDURATION) * Math.tan(args.state.tick_count / SPINDURATION) s = Math.sin(a) c = Math.cos(a) x = STARTX y = STARTY offset_x = (1280 - (ENDX - STARTX)) / 2 offset_y = (360 - (ENDY - STARTY)) / 2 srand(1) while y < ENDY do while x < ENDX do if (y == STARTY || y == (ENDY / 0.5) * 2 || y == (ENDY / 0.5) * 2 + 0.5 || y == ENDY - 0.5 || x == STARTX || x == ENDX - 0.5) z = rand(BOXDEPTH) z *= Math.sin(a / 2) x -= SPINPOINT u = (x * c) - (z * s) v = (x * s) + (z * c) k = DISTANCE.fdiv(100) + (v / 500 * YAW) u = u / k v = y / k w = POINTSIZE / 10 / k args.outputs.sprites << { x: offset_x + u - w, y: offset_y + v - w, w: w, h: w, path: 'sprites/square-blue.png'} x += SPINPOINT end x += 0.5 end y += 0.5 x = STARTX end end $gtk.reset3d - Wireframe - main.rb
# ./samples/99_genre_3d/02_wireframe/app/main.rb def tick args args.state.model ||= Object3D.new('data/shuttle.off') args.state.mtx ||= rotate3D(0, 0, 0) args.state.inv_mtx ||= rotate3D(0, 0, 0) delta_mtx = rotate3D(args.inputs.up_down * 0.01, input_roll(args) * 0.01, args.inputs.left_right * 0.01) args.outputs.lines << args.state.model.edges args.state.model.fast_3x3_transform! args.state.inv_mtx args.state.inv_mtx = mtx_mul(delta_mtx.transpose, args.state.inv_mtx) args.state.mtx = mtx_mul(args.state.mtx, delta_mtx) args.state.model.fast_3x3_transform! args.state.mtx args.outputs.background_color = [0, 0, 0] args.outputs.debug << args.gtk.framerate_diagnostics_primitives end def input_roll args roll = 0 roll += 1 if args.inputs.keyboard.e roll -= 1 if args.inputs.keyboard.q roll end def rotate3D(theta_x = 0.1, theta_y = 0.1, theta_z = 0.1) c_x, s_x = Math.cos(theta_x), Math.sin(theta_x) c_y, s_y = Math.cos(theta_y), Math.sin(theta_y) c_z, s_z = Math.cos(theta_z), Math.sin(theta_z) rot_x = [[1, 0, 0], [0, c_x, -s_x], [0, s_x, c_x]] rot_y = [[c_y, 0, s_y], [0, 1, 0], [-s_y, 0, c_y]] rot_z = [[c_z, -s_z, 0], [s_z, c_z, 0], [0, 0, 1]] mtx_mul(mtx_mul(rot_x, rot_y), rot_z) end def mtx_mul(a, b) is = (0...a.length) js = (0...b[0].length) ks = (0...b.length) is.map do |i| js.map do |j| ks.map do |k| a[i][k] * b[k][j] end.reduce(&:plus) end end end class Object3D attr_reader :vert_count, :face_count, :edge_count, :verts, :faces, :edges def initialize(path) @vert_count = 0 @face_count = 0 @edge_count = 0 @verts = [] @faces = [] @edges = [] _init_from_file path end def _init_from_file path file_lines = $gtk.read_file(path).split("\n") .reject { |line| line.start_with?('#') || line.split(' ').length == 0 } # Strip out simple comments and blank lines .map { |line| line.split('#')[0] } # Strip out end of line comments .map { |line| line.split(' ') } # Tokenize by splitting on whitespace raise "OFF file did not start with OFF." if file_lines.shift != ["OFF"] # OFF meshes are supposed to begin with "OFF" as the first line. raise "line malformed" if file_lines[0].length != 3 # The second line needs to have 3 numbers. Raise an error if it doesn't. @vert_count, @face_count, @edge_count = file_lines.shift&.map(&:to_i) # Update the counts # Only the vertex and face counts need to be accurate. Raise an error if they are inaccurate. raise "Incorrect number of vertices and/or faces (Parsed VFE header: #{@vert_count} #{@face_count} #{@edge_count})" if file_lines.length != @vert_count + @face_count # Grab all the lines describing vertices. vert_lines = file_lines[0, @vert_count] # Grab all the lines describing faces. face_lines = file_lines[@vert_count, @face_count] # Create all the vertices @verts = vert_lines.map_with_index { |line, id| Vertex.new(line, id) } # Create all the faces @faces = face_lines.map { |line| Face.new(line, @verts) } # Create all the edges @edges = @faces.flat_map(&:edges).uniq do |edge| sorted = edge.sorted [sorted.point_a, sorted.point_b] end end def fast_3x3_transform! mtx @verts.each { |vert| vert.fast_3x3_transform! mtx } end end class Face attr_reader :verts, :edges def initialize(data, verts) vert_count = data[0].to_i vert_ids = data[1, vert_count].map(&:to_i) @verts = vert_ids.map { |i| verts[i] } @edges = [] (0...vert_count).each { |i| @edges[i] = Edge.new(verts[vert_ids[i - 1]], verts[vert_ids[i]]) } @edges.rotate! 1 end end class Edge attr_reader :point_a, :point_b def initialize(point_a, point_b) @point_a = point_a @point_b = point_b end def sorted @point_a.id < @point_b.id ? self : Edge.new(@point_b, @point_a) end def draw_override ffi ffi.draw_line(@point_a.render_x, @point_a.render_y, @point_b.render_x, @point_b.render_y, 255, 0, 0, 128) ffi.draw_line(@point_a.render_x+1, @point_a.render_y, @point_b.render_x+1, @point_b.render_y, 255, 0, 0, 128) ffi.draw_line(@point_a.render_x, @point_a.render_y+1, @point_b.render_x, @point_b.render_y+1, 255, 0, 0, 128) ffi.draw_line(@point_a.render_x+1, @point_a.render_y+1, @point_b.render_x+1, @point_b.render_y+1, 255, 0, 0, 128) end def primitive_marker :line end end class Vertex attr_accessor :x, :y, :z, :id def initialize(data, id) @x = data[0].to_f @y = data[1].to_f @z = data[2].to_f @id = id end def fast_3x3_transform! mtx _x, _y, _z = @x, @y, @z @x = mtx[0][0] * _x + mtx[0][1] * _y + mtx[0][2] * _z @y = mtx[1][0] * _x + mtx[1][1] * _y + mtx[1][2] * _z @z = mtx[2][0] * _x + mtx[2][1] * _y + mtx[2][2] * _z end def render_x @x * (10 / (5 - @y)) * 170 + 640 end def render_y @z * (10 / (5 - @y)) * 170 + 360 end end 3d - Wireframe - Data - what-is-this.txt
# ./samples/99_genre_3d/02_wireframe/data/what-is-this.txt https://en.wikipedia.org/wiki/OFF_(file_format)Arcade - Dueling Starships - main.rb
# ./samples/99_genre_arcade/dueling_starships/app/main.rb class DuelingSpaceships attr_accessor :state, :inputs, :outputs, :grid def tick defaults render calc input end def defaults outputs.background_color = [0, 0, 0] state.ship_blue ||= new_blue_ship state.ship_red ||= new_red_ship state.flames ||= [] state.bullets ||= [] state.ship_blue_score ||= 0 state.ship_red_score ||= 0 state.stars ||= 100.map do [rand.add(2).to_square(grid.w_half.randomize(:sign, :ratio), grid.h_half.randomize(:sign, :ratio)), 128 + 128.randomize(:ratio), 255, 255] end end def default_ship x, y, angle, sprite_path, bullet_sprite_path, color state.new_entity(:ship, { x: x, y: y, dy: 0, dx: 0, damage: 0, dead: false, angle: angle, max_alpha: 255, sprite_path: sprite_path, bullet_sprite_path: bullet_sprite_path, color: color }) end def new_red_ship default_ship(400, 250.randomize(:sign, :ratio), 180, 'sprites/ship_red.png', 'sprites/red_bullet.png', [255, 90, 90]) end def new_blue_ship default_ship(-400, 250.randomize(:sign, :ratio), 0, 'sprites/ship_blue.png', 'sprites/blue_bullet.png', [110, 140, 255]) end def render render_instructions render_score render_universe render_flames render_ships render_bullets end def render_ships update_ship_outputs(state.ship_blue) update_ship_outputs(state.ship_red) outputs.sprites << [state.ship_blue.sprite, state.ship_red.sprite] outputs.labels << [state.ship_blue.label, state.ship_red.label] end def render_instructions return if state.ship_blue.dx > 0 || state.ship_blue.dy > 0 || state.ship_red.dx > 0 || state.ship_red.dy > 0 || state.flames.length > 0 outputs.labels << [grid.left.shift_right(30), grid.bottom.shift_up(30), "Two gamepads needed to play. R1 to accelerate. Left and right on D-PAD to turn ship. Hold A to shoot. Press B to drop mines.", 0, 0, 255, 255, 255] end def calc calc_thrusts calc_ships calc_bullets calc_winner end def input input_accelerate input_turn input_bullets_and_mines end def render_score outputs.labels << [grid.left.shift_right(80), grid.top.shift_down(40), state.ship_blue_score, 30, 1, state.ship_blue.color] outputs.labels << [grid.right.shift_left(80), grid.top.shift_down(40), state.ship_red_score, 30, 1, state.ship_red.color] end def render_universe return if outputs.static_solids.any? outputs.static_solids << grid.rect outputs.static_solids << state.stars end def apply_round_finished_alpha entity return entity unless state.round_finished_debounce entity.a *= state.round_finished_debounce.percentage_of(2.seconds) return entity end def update_ship_outputs ship, sprite_size = 66 ship.sprite = apply_round_finished_alpha [sprite_size.to_square(ship.x, ship.y), ship.sprite_path, ship.angle, ship.dead ? 0 : 255 * ship.created_at.ease(2.seconds)].sprite ship.label = apply_round_finished_alpha [ship.x, ship.y + 100, "." * 5.minus(ship.damage).greater(0), 20, 1, ship.color, 255].label end def render_flames sprite_size = 6 outputs.sprites << state.flames.map do |p| apply_round_finished_alpha [sprite_size.to_square(p.x, p.y), 'sprites/flame.png', 0, p.max_alpha * p.created_at.ease(p.lifetime, :flip)].sprite end end def render_bullets sprite_size = 10 outputs.sprites << state.bullets.map do |b| apply_round_finished_alpha [b.sprite_size.to_square(b.x, b.y), b.owner.bullet_sprite_path, 0, b.max_alpha].sprite end end def wrap_location! location location.x = grid.left if location.x > grid.right location.x = grid.right if location.x < grid.left location.y = grid.top if location.y < grid.bottom location.y = grid.bottom if location.y > grid.top location end def calc_thrusts state.flames = state.flames .reject(&:old?) .map do |p| p.speed *= 0.9 p.y += p.angle.vector_y(p.speed) p.x += p.angle.vector_x(p.speed) wrap_location! p end end def all_ships [state.ship_blue, state.ship_red] end def alive_ships all_ships.reject { |s| s.dead } end def calc_bullet bullet bullet.y += bullet.angle.vector_y(bullet.speed) bullet.x += bullet.angle.vector_x(bullet.speed) wrap_location! bullet explode_bullet! bullet if bullet.old? return if bullet.exploded return if state.round_finished alive_ships.each do |s| if s != bullet.owner && s.sprite.intersect_rect?(bullet.sprite_size.to_square(bullet.x, bullet.y)) explode_bullet! bullet, 10, 5, 30 s.damage += 1 end end end def calc_bullets state.bullets.each { |b| calc_bullet b } state.bullets.reject! { |b| b.exploded } end def create_explosion! type, entity, flame_count, max_speed, lifetime, max_alpha = 255 flame_count.times do state.flames << state.new_entity(type, { angle: 360.randomize(:ratio), speed: max_speed.randomize(:ratio), lifetime: lifetime, x: entity.x, y: entity.y, max_alpha: max_alpha }) end end def explode_bullet! bullet, flame_override = 5, max_speed = 5, lifetime = 10 bullet.exploded = true create_explosion! :bullet_explosion, bullet, flame_override, max_speed, lifetime, bullet.max_alpha end def calc_ship ship ship.x += ship.dx ship.y += ship.dy wrap_location! ship end def calc_ships all_ships.each { |s| calc_ship s } return if all_ships.any? { |s| s.dead } return if state.round_finished return unless state.ship_blue.sprite.intersect_rect?(state.ship_red.sprite) state.ship_blue.damage = 5 state.ship_red.damage = 5 end def create_thruster_flames! ship state.flames << state.new_entity(:ship_thruster, { angle: ship.angle + 180 + 60.randomize(:sign, :ratio), speed: 5.randomize(:ratio), max_alpha: 255 * ship.created_at_elapsed.percentage_of(2.seconds), lifetime: 30, x: ship.x - ship.angle.vector_x(40) + 5.randomize(:sign, :ratio), y: ship.y - ship.angle.vector_y(40) + 5.randomize(:sign, :ratio) }) end def input_accelerate_ship should_move_ship, ship return if ship.dead should_move_ship &&= (ship.dx + ship.dy).abs < 5 if should_move_ship create_thruster_flames! ship ship.dx += ship.angle.vector_x 0.050 ship.dy += ship.angle.vector_y 0.050 else ship.dx *= 0.99 ship.dy *= 0.99 end end def input_accelerate input_accelerate_ship inputs.controller_one.key_held.r1 || inputs.keyboard.up, state.ship_blue input_accelerate_ship inputs.controller_two.key_held.r1, state.ship_red end def input_turn_ship direction, ship ship.angle -= 3 * direction end def input_turn input_turn_ship inputs.controller_one.left_right + inputs.keyboard.left_right, state.ship_blue input_turn_ship inputs.controller_two.left_right, state.ship_red end def input_bullet create_bullet, ship return unless create_bullet return if ship.dead state.bullets << state.new_entity(:ship_bullet, { owner: ship, angle: ship.angle, max_alpha: 255 * ship.created_at_elapsed.percentage_of(2.seconds), speed: 5 + ship.dx.mult(ship.angle.vector_x) + ship.dy.mult(ship.angle.vector_y), lifetime: 120, sprite_size: 10, x: ship.x + ship.angle.vector_x * 32, y: ship.y + ship.angle.vector_y * 32 }) end def input_mine create_mine, ship return unless create_mine return if ship.dead state.bullets << state.new_entity(:ship_bullet, { owner: ship, angle: 360.randomize(:sign, :ratio), max_alpha: 255 * ship.created_at_elapsed.percentage_of(2.seconds), speed: 0.02, sprite_size: 10, lifetime: 600, x: ship.x + ship.angle.vector_x * -50, y: ship.y + ship.angle.vector_y * -50 }) end def input_bullets_and_mines return if state.bullets.length > 100 [ [inputs.controller_one.key_held.a || inputs.keyboard.key_held.space, inputs.controller_one.key_down.b || inputs.keyboard.key_down.down, state.ship_blue], [inputs.controller_two.key_held.a, inputs.controller_two.key_down.b, state.ship_red] ].each do |a_held, b_down, ship| input_bullet(a_held && state.tick_count.mod_zero?(10).or(a_held == 0), ship) input_mine(b_down, ship) end end def calc_kill_ships alive_ships.find_all { |s| s.damage >= 5 }.each do |s| s.dead = true create_explosion! :ship_explosion, s, 20, 20, 30, s.max_alpha end end def calc_score return if state.round_finished return if alive_ships.length > 1 if alive_ships.first == state.ship_red state.ship_red_score += 1 elsif alive_ships.first == state.ship_blue state.ship_blue_score += 1 end state.round_finished = true end def calc_reset_ships return unless state.round_finished state.round_finished_debounce ||= 2.seconds state.round_finished_debounce -= 1 return if state.round_finished_debounce > 0 start_new_round! end def start_new_round! state.ship_blue = new_blue_ship state.ship_red = new_red_ship state.round_finished = false state.round_finished_debounce = nil state.flames.clear state.bullets.clear end def calc_winner calc_kill_ships calc_score calc_reset_ships end end $dueling_spaceship = DuelingSpaceships.new def tick args args.grid.origin_center! $dueling_spaceship.inputs = args.inputs $dueling_spaceship.outputs = args.outputs $dueling_spaceship.state = args.state $dueling_spaceship.grid = args.grid $dueling_spaceship.tick endarcade/flappy dragon/credits.txt
# ./samples/99_genre_arcade/flappy_dragon/CREDITS.txt code: Amir Rajan, https://twitter.com/amirrajan graphics and audio: Nick Culbertson, https://twitter.com/MobyPixelarcade/flappy dragon/main.rb
# ./samples/99_genre_arcade/flappy_dragon/app/main.rb class FlappyDragon attr_accessor :grid, :inputs, :state, :outputs def tick defaults render calc process_inputs end def defaults state.flap_power = 11 state.gravity = 0.9 state.ceiling = 600 state.ceiling_flap_power = 6 state.wall_countdown_length = 100 state.wall_gap_size = 100 state.wall_countdown ||= 0 state.hi_score ||= 0 state.score ||= 0 state.walls ||= [] state.x ||= 50 state.y ||= 500 state.dy ||= 0 state.scene ||= :menu state.scene_at ||= 0 state.difficulty ||= :normal state.new_difficulty ||= :normal state.countdown ||= 4.seconds state.flash_at ||= 0 end def render outputs.sounds << "sounds/flappy-song.ogg" if state.tick_count == 1 render_score render_menu render_game end def render_score outputs.primitives << [10, 710, "HI SCORE: #{state.hi_score}", large_white_typeset].label outputs.primitives << [10, 680, "SCORE: #{state.score}", large_white_typeset].label outputs.primitives << [10, 650, "DIFFICULTY: #{state.difficulty.upcase}", large_white_typeset].label end def render_menu return unless state.scene == :menu render_overlay outputs.labels << [640, 700, "Flappy Dragon", 50, 1, 255, 255, 255] outputs.labels << [640, 500, "Instructions: Press Spacebar to flap. Don't die.", 4, 1, 255, 255, 255] outputs.labels << [430, 430, "[Tab] Change difficulty", 4, 0, 255, 255, 255] outputs.labels << [430, 400, "[Enter] Start at New Difficulty ", 4, 0, 255, 255, 255] outputs.labels << [430, 370, "[Escape] Cancel/Resume ", 4, 0, 255, 255, 255] outputs.labels << [640, 300, "(mouse, touch, and game controllers work, too!) ", 4, 1, 255, 255, 255] outputs.labels << [640, 200, "Difficulty: #{state.new_difficulty.capitalize}", 4, 1, 255, 255, 255] outputs.labels << [10, 100, "Code: @amirrajan", 255, 255, 255] outputs.labels << [10, 80, "Art: @mobypixel", 255, 255, 255] outputs.labels << [10, 60, "Music: @mobypixel", 255, 255, 255] outputs.labels << [10, 40, "Engine: DragonRuby GTK", 255, 255, 255] end def render_overlay outputs.primitives << [grid.rect.scale_rect(1.1, 0, 0), 0, 0, 0, 230].solid end def render_game render_game_over render_background render_walls render_dragon render_flash end def render_game_over return unless state.scene == :game outputs.labels << [638, 358, score_text, 20, 1] outputs.labels << [635, 360, score_text, 20, 1, 255, 255, 255] outputs.labels << [638, 428, countdown_text, 20, 1] outputs.labels << [635, 430, countdown_text, 20, 1, 255, 255, 255] end def render_background outputs.sprites << [0, 0, 1280, 720, 'sprites/background.png'] scroll_point_at = state.tick_count scroll_point_at = state.scene_at if state.scene == :menu scroll_point_at = state.death_at if state.countdown > 0 scroll_point_at ||= 0 outputs.sprites << scrolling_background(scroll_point_at, 'sprites/parallax_back.png', 0.25) outputs.sprites << scrolling_background(scroll_point_at, 'sprites/parallax_middle.png', 0.50) outputs.sprites << scrolling_background(scroll_point_at, 'sprites/parallax_front.png', 1.00, -80) end def render_walls state.walls.each do |w| w.sprites = [ [w.x, w.bottom_height - 720, 100, 720, 'sprites/wall.png', 180], [w.x, w.top_y, 100, 720, 'sprites/wallbottom.png', 0] ] end outputs.sprites << state.walls.map(&:sprites) end def render_dragon state.show_death = true if state.countdown == 3.seconds render_debug_hitbox false if state.show_death == false || !state.death_at animation_index = state.flapped_at.frame_index 6, 2, false if state.flapped_at sprite_name = "sprites/dragon_fly#{animation_index.or(0) + 1}.png" state.dragon_sprite = [state.x, state.y, 100, 80, sprite_name, state.dy * 1.2] else sprite_name = "sprites/dragon_die.png" state.dragon_sprite = [state.x, state.y, 100, 80, sprite_name, state.dy * 1.2] sprite_changed_elapsed = state.death_at.elapsed_time - 1.seconds state.dragon_sprite.angle += (sprite_changed_elapsed ** 1.3) * state.death_fall_direction * -1 state.dragon_sprite.x += (sprite_changed_elapsed ** 1.2) * state.death_fall_direction state.dragon_sprite.y += (sprite_changed_elapsed * 14 - sprite_changed_elapsed ** 1.6) end outputs.sprites << state.dragon_sprite end def render_debug_hitbox show return unless show outputs.borders << [dragon_collision_box.rect, 255, 0, 0] if state.dragon_sprite outputs.borders << state.walls.flat_map do |w| w.sprites.map { |s| [s.rect, 255, 0, 0] } end end def render_flash return unless state.flash_at outputs.primitives << [grid.rect, white, 255 * state.flash_at.ease(20, :flip)].solid state.flash_at = 0 if state.flash_at.elapsed_time > 20 end def calc return unless state.scene == :game reset_game if state.countdown == 1 state.countdown -= 1 and return if state.countdown > 0 calc_walls calc_flap calc_game_over end def calc_walls state.walls.each { |w| w.x -= 8 } walls_count_before_removal = state.walls.length state.walls.reject! { |w| w.x < -100 } state.score += 1 if state.walls.count < walls_count_before_removal state.wall_countdown -= 1 and return if state.wall_countdown > 0 state.walls << state.new_entity(:wall) do |w| w.x = grid.right w.opening = grid.top .randomize(:ratio) .greater(200) .lesser(520) w.bottom_height = w.opening - state.wall_gap_size w.top_y = w.opening + state.wall_gap_size end state.wall_countdown = state.wall_countdown_length end def calc_flap state.y += state.dy state.dy = state.dy.lesser state.flap_power state.dy -= state.gravity return if state.y < state.ceiling state.y = state.ceiling state.dy = state.dy.lesser state.ceiling_flap_power end def calc_game_over return unless game_over? state.death_at = state.tick_count state.death_from = state.walls.first state.death_fall_direction = -1 state.death_fall_direction = 1 if state.x > state.death_from.x outputs.sounds << "sounds/hit-sound.wav" begin_countdown end def process_inputs process_inputs_menu process_inputs_game end def process_inputs_menu return unless state.scene == :menu changediff = inputs.keyboard.key_down.tab || inputs.controller_one.key_down.select if inputs.mouse.click p = inputs.mouse.click.point if (p.y >= 165) && (p.y < 200) && (p.x >= 500) && (p.x < 800) changediff = true end end if changediff case state.new_difficulty when :easy state.new_difficulty = :normal when :normal state.new_difficulty = :hard when :hard state.new_difficulty = :flappy when :flappy state.new_difficulty = :easy end end if inputs.keyboard.key_down.enter || inputs.controller_one.key_down.start || inputs.controller_one.key_down.a state.difficulty = state.new_difficulty change_to_scene :game reset_game false state.hi_score = 0 begin_countdown end if inputs.keyboard.key_down.escape || (inputs.mouse.click && !changediff) || inputs.controller_one.key_down.b state.new_difficulty = state.difficulty change_to_scene :game end end def process_inputs_game return unless state.scene == :game clicked_menu = false if inputs.mouse.click p = inputs.mouse.click.point clicked_menu = (p.y >= 620) && (p.x < 275) end if clicked_menu || inputs.keyboard.key_down.escape || inputs.keyboard.key_down.enter || inputs.controller_one.key_down.start change_to_scene :menu elsif (inputs.mouse.down || inputs.mouse.click || inputs.keyboard.key_down.space || inputs.controller_one.key_down.a) && state.countdown == 0 state.dy = 0 state.dy += state.flap_power state.flapped_at = state.tick_count outputs.sounds << "sounds/fly-sound.wav" end end def scrolling_background at, path, rate, y = 0 [ [ 0 - at.*(rate) % 1440, y, 1440, 720, path], [1440 - at.*(rate) % 1440, y, 1440, 720, path] ] end def white [255, 255, 255] end def large_white_typeset [5, 0, 255, 255, 255] end def at_beginning? state.walls.count == 0 end def dragon_collision_box state.dragon_sprite .scale_rect(1.0 - collision_forgiveness, 0.5, 0.5) .rect_shift_right(10) .rect_shift_up(state.dy * 2) end def game_over? return true if state.y <= 0.-(500 * collision_forgiveness) && !at_beginning? state.walls .flat_map { |w| w.sprites } .any? do |s| s.intersect_rect?(dragon_collision_box) end end def collision_forgiveness case state.difficulty when :easy 0.9 when :normal 0.7 when :hard 0.5 when :flappy 0.3 else 0.9 end end def countdown_text state.countdown ||= -1 return "" if state.countdown == 0 return "GO!" if state.countdown.idiv(60) == 0 return "GAME OVER" if state.death_at return "READY?" end def begin_countdown state.countdown = 4.seconds end def score_text return "" unless state.countdown > 1.seconds return "" unless state.death_at return "SCORE: 0 (LOL)" if state.score == 0 return "HI SCORE: #{state.score}" if state.score == state.hi_score return "SCORE: #{state.score}" end def reset_game set_flash = true state.flash_at = state.tick_count if set_flash state.walls = [] state.y = 500 state.dy = 0 state.hi_score = state.hi_score.greater(state.score) state.score = 0 state.wall_countdown = state.wall_countdown_length.fdiv(2) state.show_death = false state.death_at = nil end def change_to_scene scene state.scene = scene state.scene_at = state.tick_count inputs.keyboard.clear inputs.controller_one.clear end end $flappy_dragon = FlappyDragon.new def tick args $flappy_dragon.grid = args.grid $flappy_dragon.inputs = args.inputs $flappy_dragon.state = args.state $flappy_dragon.outputs = args.outputs $flappy_dragon.tick endArcade - Pong - main.rb
# ./samples/99_genre_arcade/pong/app/main.rb def tick args defaults args render args calc args input args end def defaults args args.state.ball.debounce ||= 3 * 60 args.state.ball.size ||= 10 args.state.ball.size_half ||= args.state.ball.size / 2 args.state.ball.x ||= 640 args.state.ball.y ||= 360 args.state.ball.dx ||= 5.randomize(:sign) args.state.ball.dy ||= 5.randomize(:sign) args.state.left_paddle.y ||= 360 args.state.right_paddle.y ||= 360 args.state.paddle.h ||= 120 args.state.paddle.w ||= 10 args.state.left_paddle.score ||= 0 args.state.right_paddle.score ||= 0 end def render args render_center_line args render_scores args render_countdown args render_ball args render_paddles args render_instructions args end begin :render_methods def render_center_line args args.outputs.lines << [640, 0, 640, 720] end def render_scores args args.outputs.labels << [ [320, 650, args.state.left_paddle.score, 10, 1], [960, 650, args.state.right_paddle.score, 10, 1] ] end def render_countdown args return unless args.state.ball.debounce > 0 args.outputs.labels << [640, 360, "%.2f" % args.state.ball.debounce.fdiv(60), 10, 1] end def render_ball args args.outputs.solids << solid_ball(args) end def render_paddles args args.outputs.solids << solid_left_paddle(args) args.outputs.solids << solid_right_paddle(args) end def render_instructions args args.outputs.labels << [320, 30, "W and S keys to move left paddle.", 0, 1] args.outputs.labels << [920, 30, "O and L keys to move right paddle.", 0, 1] end end def calc args args.state.ball.debounce -= 1 and return if args.state.ball.debounce > 0 calc_move_ball args calc_collision_with_left_paddle args calc_collision_with_right_paddle args calc_collision_with_walls args end begin :calc_methods def calc_move_ball args args.state.ball.x += args.state.ball.dx args.state.ball.y += args.state.ball.dy end def calc_collision_with_left_paddle args if solid_left_paddle(args).intersect_rect? solid_ball(args) args.state.ball.dx *= -1 elsif args.state.ball.x < 0 args.state.right_paddle.score += 1 calc_reset_round args end end def calc_collision_with_right_paddle args if solid_right_paddle(args).intersect_rect? solid_ball(args) args.state.ball.dx *= -1 elsif args.state.ball.x > 1280 args.state.left_paddle.score += 1 calc_reset_round args end end def calc_collision_with_walls args if args.state.ball.y + args.state.ball.size_half > 720 args.state.ball.y = 720 - args.state.ball.size_half args.state.ball.dy *= -1 elsif args.state.ball.y - args.state.ball.size_half < 0 args.state.ball.y = args.state.ball.size_half args.state.ball.dy *= -1 end end def calc_reset_round args args.state.ball.x = 640 args.state.ball.y = 360 args.state.ball.dx = 5.randomize(:sign) args.state.ball.dy = 5.randomize(:sign) args.state.ball.debounce = 3 * 60 end end def input args input_left_paddle args input_right_paddle args end begin :input_methods def input_left_paddle args if args.inputs.controller_one.key_down.down || args.inputs.keyboard.key_down.s args.state.left_paddle.y -= 40 elsif args.inputs.controller_one.key_down.up || args.inputs.keyboard.key_down.w args.state.left_paddle.y += 40 end end def input_right_paddle args if args.inputs.controller_two.key_down.down || args.inputs.keyboard.key_down.l args.state.right_paddle.y -= 40 elsif args.inputs.controller_two.key_down.up || args.inputs.keyboard.key_down.o args.state.right_paddle.y += 40 end end end begin :assets def solid_ball args centered_rect args.state.ball.x, args.state.ball.y, args.state.ball.size, args.state.ball.size end def solid_left_paddle args centered_rect_vertically 0, args.state.left_paddle.y, args.state.paddle.w, args.state.paddle.h end def solid_right_paddle args centered_rect_vertically 1280 - args.state.paddle.w, args.state.right_paddle.y, args.state.paddle.w, args.state.paddle.h end def centered_rect x, y, w, h [x - w / 2, y - h / 2, w, h] end def centered_rect_vertically x, y, w, h [x, y - h / 2, w, h] end endArcade - Snakemoji - main.rb
# ./samples/99_genre_arcade/snakemoji/app/main.rb # coding: utf-8 ################################ # So I was working on a snake game while # learning DragonRuby, and at some point I had a thought # what if I use "😀" as a function name, surely it wont work right...? # RIGHT....? # BUT IT DID, IT WORKED # it all went downhill from then # Created by Anton K. (ai Doge) # https://gist.github.com/scorp200 #############LICENSE############ # Feel free to use this anywhere and however you want # You can sell this to EA for $1,000,000 if you want, its completely free. # Just rememeber you are helping this... thing... to spread... # ALSO! I am not liable for any mental, physical or financial damage caused. #############LICENSE############ class Array #Helper function def move! vector self.x += vector.x self.y += vector.y return self end #Helper function to draw snake body def draw! 🎮, 📺, color translate 📺.solids, 🎮.⛓, [self.x * 🎮.⚖️ + 🎮.🛶 / 2, self.y * 🎮.⚖️ + 🎮.🛶 / 2, 🎮.⚖️ - 🎮.🛶, 🎮.⚖️ - 🎮.🛶, color] end #This is where it all started, I was trying to find good way to multiply a map by a number, * is already used so is ** #I kept trying different combinations of symbols, when suddenly... def 😀 value self.map {|d| d * value} end end #Draw stuff with an offset def translate output_collection, ⛓, what what.x += ⛓.x what.y += ⛓.y output_collection << what end BLUE = [33, 150, 243] RED = [244, 67, 54] GOLD = [255, 193, 7] LAST = 0 def tick args defaults args.state render args.state, args.outputs input args.state, args.inputs update args.state end def update 🎮 #Update every 10 frames if 🎮.tick_count.mod_zero? 10 #Add new snake body piece at head's location 🎮.🐍 << [*🎮.🤖] #Assign Next Direction to Direction 🎮.🚗 = *🎮.🚦 #Trim the snake a bit if its longer than current size if 🎮.🐍.length > 🎮.🛒 🎮.🐍 = 🎮.🐍[-🎮.🛒..-1] end #Move the head in the Direction 🎮.🤖.move! 🎮.🚗 #If Head is outside the playing field, or inside snake's body restart game if 🎮.🤖.x < 0 || 🎮.🤖.x >= 🎮.🗺.x || 🎮.🤖.y < 0 || 🎮.🤖.y >= 🎮.🗺.y || 🎮.🚗 != [0, 0] && 🎮.🐍.any? {|s| s == 🎮.🤖} LAST = 🎮.💰 🎮.as_hash.clear return end #If head lands on food add size and score if 🎮.🤖 == 🎮.🍎 🎮.🛒 += 1 🎮.💰 += (🎮.🛒 * 0.8).floor.to_i + 5 spawn_🍎 🎮 puts 🎮.🍎 end end #Every second remove 1 point if 🎮.💰 > 0 && 🎮.tick_count.mod_zero?(60) 🎮.💰 -= 1 end end def spawn_🍎 🎮 #Food 🎮.🍎 ||= [*🎮.🤖] #Randomly spawns food inside the playing field, keep doing this if the food keeps landing on the snake's body while 🎮.🐍.any? {|s| s == 🎮.🍎} || 🎮.🍎 == 🎮.🤖 do 🎮.🍎 = [rand(🎮.🗺.x), rand(🎮.🗺.y)] end end def render 🎮, 📺 #Paint the background black 📺.solids << [0, 0, 1280, 720, 0, 0, 0, 255] #Draw a border for the playing field translate 📺.borders, 🎮.⛓, [0, 0, 🎮.🗺.x * 🎮.⚖️, 🎮.🗺.y * 🎮.⚖️, 255, 255, 255] #Draw the snake's body 🎮.🐍.map do |🐍| 🐍.draw! 🎮, 📺, BLUE end #Draw the head 🎮.🤖.draw! 🎮, 📺, BLUE #Draw the food 🎮.🍎.draw! 🎮, 📺, RED #Draw current score translate 📺.labels, 🎮.⛓, [5, 715, "Score: #{🎮.💰}", GOLD] #Draw your last score, if any translate 📺.labels, 🎮.⛓, [[*🎮.🤖.😀(🎮.⚖️)].move!([0, 🎮.⚖️ * 2]), "Your Last score is #{LAST}", 0, 1, GOLD] unless LAST == 0 || 🎮.🚗 != [0, 0] #Draw starting message, only if Direction is 0 translate 📺.labels, 🎮.⛓, [🎮.🤖.😀(🎮.⚖️), "Press any Arrow key to start", 0, 1, GOLD] unless 🎮.🚗 != [0, 0] end def input 🎮, 🕹 #Left and Right keyboard input, only change if X direction is 0 if 🕹.keyboard.key_held.left && 🎮.🚗.x == 0 🎮.🚦 = [-1, 0] elsif 🕹.keyboard.key_held.right && 🎮.🚗.x == 0 🎮.🚦 = [1, 0] end #Up and Down keyboard input, only change if Y direction is 0 if 🕹.keyboard.key_held.up && 🎮.🚗.y == 0 🎮.🚦 = [0, 1] elsif 🕹.keyboard.key_held.down && 🎮.🚗.y == 0 🎮.🚦 = [0, -1] end end def defaults 🎮 #Playing field size 🎮.🗺 ||= [20, 20] #Scale for drawing, screen height / Field height 🎮.⚖️ ||= 720 / 🎮.🗺.y #Offset, offset all rendering to the center of the screen 🎮.⛓ ||= [(1280 - 720).fdiv(2), 0] #Padding, make the snake body slightly smaller than the scale 🎮.🛶 ||= (🎮.⚖️ * 0.2).to_i #Snake Size 🎮.🛒 ||= 3 #Snake head, the only part we are actually controlling 🎮.🤖 ||= [🎮.🗺.x / 2, 🎮.🗺.y / 2] #Snake body map, follows the head 🎮.🐍 ||= [] #Direction the head moves to 🎮.🚗 ||= [0, 0] #Next_Direction, during input check only change this variable and then when game updates asign this to Direction 🎮.🚦 ||= [*🎮.🚗] #Your score 🎮.💰 ||= 0 #Spawns Food randomly spawn_🍎(🎮) unless 🎮.🍎? endArcade - Solar System - main.rb
# ./samples/99_genre_arcade/solar_system/app/main.rb # Focused tutorial video: https://s3.amazonaws.com/s3.dragonruby.org/dragonruby-nddnug-workshop.mp4 # Workshop/Presentation which provides motivation for creating a game engine: https://www.youtube.com/watch?v=S3CFce1arC8 def defaults args args.outputs.background_color = [0, 0, 0] args.state.x ||= 640 args.state.y ||= 360 args.state.stars ||= 100.map do [1280 * rand, 720 * rand, rand.fdiv(10), 255 * rand, 255 * rand, 255 * rand] end args.state.sun ||= args.state.new_entity(:sun) do |s| s.s = 100 s.path = 'sprites/sun.png' end args.state.planets = [ [:mercury, 65, 5, 88], [:venus, 100, 10, 225], [:earth, 120, 10, 365], [:mars, 140, 8, 687], [:jupiter, 280, 30, 365 * 11.8], [:saturn, 350, 20, 365 * 29.5], [:uranus, 400, 15, 365 * 84], [:neptune, 440, 15, 365 * 164.8], [:pluto, 480, 5, 365 * 247.8], ].map do |name, distance, size, year_in_days| args.state.new_entity(name) do |p| p.path = "sprites/#{name}.png" p.distance = distance * 0.7 p.s = size * 0.7 p.year_in_days = year_in_days end end args.state.ship ||= args.state.new_entity(:ship) do |s| s.x = 1280 * rand s.y = 720 * rand s.angle = 0 end end def to_sprite args, entity x = 0 y = 0 if entity.year_in_days day = args.state.tick_count day_in_year = day % entity.year_in_days entity.random_start_day ||= day_in_year * rand percentage_of_year = day_in_year.fdiv(entity.year_in_days) angle = 365 * percentage_of_year x = angle.vector_x(entity.distance) y = angle.vector_y(entity.distance) end [640 + x - entity.s.half, 360 + y - entity.s.half, entity.s, entity.s, entity.path] end def render args args.outputs.solids << [0, 0, 1280, 720] args.outputs.sprites << args.state.stars.map do |x, y, _, r, g, b| [x, y, 10, 10, 'sprites/star.png', 0, 100, r, g, b] end args.outputs.sprites << to_sprite(args, args.state.sun) args.outputs.sprites << args.state.planets.map { |p| to_sprite args, p } args.outputs.sprites << [args.state.ship.x, args.state.ship.y, 20, 20, 'sprites/ship.png', args.state.ship.angle] end def calc args args.state.stars = args.state.stars.map do |x, y, speed, r, g, b| x += speed y += speed x = 0 if x > 1280 y = 0 if y > 720 [x, y, speed, r, g, b] end if args.state.tick_count == 0 args.outputs.sounds << 'sounds/bg.ogg' end end def process_inputs args if args.inputs.keyboard.left || args.inputs.controller_one.key_held.left args.state.ship.angle += 1 elsif args.inputs.keyboard.right || args.inputs.controller_one.key_held.right args.state.ship.angle -= 1 end if args.inputs.keyboard.up || args.inputs.controller_one.key_held.a args.state.ship.x += args.state.ship.angle.x_vector args.state.ship.y += args.state.ship.angle.y_vector end end def tick args defaults args render args calc args process_inputs args end def r $gtk.reset endArcade - Twinstick - main.rb
# ./samples/99_genre_arcade/twinstick/app/main.rb def tick args args.state.player ||= {x: 600, y: 320, w: 80, h: 80, path: 'sprites/circle-white.png', vx: 0, vy: 0, health: 10, cooldown: 0, score: 0} args.state.enemies ||= [] args.state.player_bullets ||= [] args.state.tick_count ||= -1 args.state.tick_count += 1 spawn_enemies args kill_enemies args move_enemies args move_bullets args move_player args fire_player args args.state.player[:r] = args.state.player[:g] = args.state.player[:b] = (args.state.player[:health] * 25.5).clamp(0, 255) label_color = args.state.player[:health] <= 5 ? 255 : 0 args.outputs.labels << [ { x: args.state.player.x + 40, y: args.state.player.y + 60, alignment_enum: 1, text: "#{args.state.player[:health]} HP", r: label_color, g: label_color, b: label_color }, { x: args.state.player.x + 40, y: args.state.player.y + 40, alignment_enum: 1, text: "#{args.state.player[:score]} PTS", r: label_color, g: label_color, b: label_color, size_enum: 2 - args.state.player[:score].to_s.length, } ] args.outputs.sprites << [args.state.player, args.state.enemies, args.state.player_bullets] args.state.clear! if args.state.player[:health] < 0 # Reset the game if the player's health drops below zero end def spawn_enemies args # Spawn enemies more frequently as the player's score increases. if rand < (100+args.state.player[:score])/(10000 + args.state.player[:score]) || args.state.tick_count.zero? theta = rand * Math::PI * 2 args.state.enemies << { x: 600 + Math.cos(theta) * 800, y: 320 + Math.sin(theta) * 800, w: 80, h: 80, path: 'sprites/circle-white.png', r: (256 * rand).floor, g: (256 * rand).floor, b: (256 * rand).floor } end end def kill_enemies args args.state.enemies.reject! do |enemy| # Check if enemy and player are within 80 pixels of each other (i.e. overlapping) if 6400 > (enemy.x - args.state.player.x) ** 2 + (enemy.y - args.state.player.y) ** 2 # Enemy is touching player. Kill enemy, and reduce player HP by 1. args.state.player[:health] -= 1 else args.state.player_bullets.any? do |bullet| # Check if enemy and bullet are within 50 pixels of each other (i.e. overlapping) if 2500 > (enemy.x - bullet.x + 30) ** 2 + (enemy.y - bullet.y + 30) ** 2 # Increase player health by one for each enemy killed by a bullet after the first enemy, up to a maximum of 10 HP args.state.player[:health] += 1 if args.state.player[:health] < 10 && bullet[:kills] > 0 # Keep track of how many enemies have been killed by this particular bullet bullet[:kills] += 1 # Earn more points by killing multiple enemies with one shot. args.state.player[:score] += bullet[:kills] end end end end end def move_enemies args args.state.enemies.each do |enemy| # Get the angle from the enemy to the player theta = Math.atan2(enemy.y - args.state.player.y, enemy.x - args.state.player.x) # Convert the angle to a vector pointing at the player dx, dy = theta.to_degrees.vector 5 # Move the enemy towards thr player enemy.x -= dx enemy.y -= dy end end def move_bullets args args.state.player_bullets.each do |bullet| # Move the bullets according to the bullet's velocity bullet.x += bullet[:vx] bullet.y += bullet[:vy] end args.state.player_bullets.reject! do |bullet| # Despawn bullets that are outside the screen area bullet.x < -20 || bullet.y < -20 || bullet.x > 1300 || bullet.y > 740 end end def move_player args # Get the currently held direction. dx, dy = move_directional_vector args # Take the weighted average of the old velocities and the desired velocities. # Since move_directional_vector returns values between -1 and 1, # and we want to limit the speed to 7.5, we multiply dx and dy by 7.5*0.1 to get 0.75 args.state.player[:vx] = args.state.player[:vx] * 0.9 + dx * 0.75 args.state.player[:vy] = args.state.player[:vy] * 0.9 + dy * 0.75 # Move the player args.state.player.x += args.state.player[:vx] args.state.player.y += args.state.player[:vy] # If the player is about to go out of bounds, put them back in bounds. args.state.player.x = args.state.player.x.clamp(0, 1201) args.state.player.y = args.state.player.y.clamp(0, 640) end def fire_player args # Reduce the firing cooldown each tick args.state.player[:cooldown] -= 1 # If the player is allowed to fire if args.state.player[:cooldown] <= 0 dx, dy = shoot_directional_vector args # Get the bullet velocity return if dx == 0 && dy == 0 # If the velocity is zero, the player doesn't want to fire. Therefore, we just return early. # Add a new bullet to the list of player bullets. args.state.player_bullets << { x: args.state.player.x + 30 + 40 * dx, y: args.state.player.y + 30 + 40 * dy, w: 20, h: 20, path: 'sprites/circle-white.png', r: 0, g: 0, b: 0, vx: 10 * dx + args.state.player[:vx] / 7.5, vy: 10 * dy + args.state.player[:vy] / 7.5, # Factor in a bit of the player's velocity kills: 0 } args.state.player[:cooldown] = 30 # Reset the cooldown end end # Custom function for getting a directional vector just for movement using WASD def move_directional_vector args dx = 0 dx += 1 if args.inputs.keyboard.d dx -= 1 if args.inputs.keyboard.a dy = 0 dy += 1 if args.inputs.keyboard.w dy -= 1 if args.inputs.keyboard.s if dx != 0 && dy != 0 dx *= 0.7071 dy *= 0.7071 end [dx, dy] end # Custom function for getting a directional vector just for shooting using the arrow keys def shoot_directional_vector args dx = 0 dx += 1 if args.inputs.keyboard.key_down.right || args.inputs.keyboard.key_held.right dx -= 1 if args.inputs.keyboard.key_down.left || args.inputs.keyboard.key_held.left dy = 0 dy += 1 if args.inputs.keyboard.key_down.up || args.inputs.keyboard.key_held.up dy -= 1 if args.inputs.keyboard.key_down.down || args.inputs.keyboard.key_held.down if dx != 0 && dy != 0 dx *= 0.7071 dy *= 0.7071 end [dx, dy] endCrafting - Craft Game Starting Point - main.rb
# ./samples/99_genre_crafting/craft_game_starting_point/app/main.rb # ================================================== # A NOTE TO JAM CRAFT PARTICIPANTS: # The comments and code in here are just as small piece of DragonRuby's capabilities. # Be sure to check out the rest of the sample apps. Start with README.txt and go from there! # ================================================== # def tick args is the entry point into your game. This function is called at # a fixed update time of 60hz (60 fps). def tick args # The defaults function intitializes the game. defaults args # After the game is initialized, render it. render args # After rendering the player should be able to respond to input. input args # After responding to input, the game performs any additional calculations. calc args end def defaults args # hide the mouse cursor for this game, we are going to render our own cursor if args.state.tick_count == 0 args.gtk.hide_cursor end args.state.click_ripples ||= [] # everything is on a 1280x720 virtual canvas, so you can # hardcode locations # define the borders for where the inventory is located # args.state is a data structure that accepts any arbitrary parameters # so you can create an object graph without having to create any classes. # Bottom left is 0, 0. Top right is 1280, 720. # The inventory area is at the top of the screen # the number 80 is the size of all the sprites, so that is what is being # used to decide the with and height args.state.sprite_size = 80 args.state.inventory_border.w = args.state.sprite_size * 10 args.state.inventory_border.h = args.state.sprite_size * 3 args.state.inventory_border.x = 10 args.state.inventory_border.y = 710 - args.state.inventory_border.h # define the borders for where the crafting area is located # the crafting area is below the inventory area # the number 80 is the size of all the sprites, so that is what is being # used to decide the with and height args.state.craft_border.x = 10 args.state.craft_border.y = 220 args.state.craft_border.w = args.state.sprite_size * 3 args.state.craft_border.h = args.state.sprite_size * 3 # define the area where results are located # the crafting result is to the right of the craft area args.state.result_border.x = 10 + args.state.sprite_size * 3 + args.state.sprite_size args.state.result_border.y = 220 + args.state.sprite_size args.state.result_border.w = args.state.sprite_size args.state.result_border.h = args.state.sprite_size # initialize items for the first time if they are nil # you start with 15 wood, 1 chest, and 5 plank # Ruby has built in syntax for dictionaries (they look a lot like json objects). # Ruby also has a special type called a Symbol denoted with a : followed by a word. # Symbols are nice because they remove the need for magic strings. if !args.state.items args.state.items = [ { id: :wood, # :wood is a Symbol, this is better than using "wood" for the id quantity: 15, path: 'sprites/wood.png', location: :inventory, ordinal_x: 0, ordinal_y: 0 }, { id: :chest, quantity: 1, path: 'sprites/chest.png', location: :inventory, ordinal_x: 1, ordinal_y: 0 }, { id: :plank, quantity: 5, path: 'sprites/plank.png', location: :inventory, ordinal_x: 2, ordinal_y: 0 }, ] # after initializing the oridinal positions, derive the pixel # locations assuming that the width and height are 80 args.state.items.each { |item| set_inventory_position args, item } end # define all the oridinal positions of the inventory slots if !args.state.inventory_area args.state.inventory_area = [ { ordinal_x: 0, ordinal_y: 0 }, { ordinal_x: 1, ordinal_y: 0 }, { ordinal_x: 2, ordinal_y: 0 }, { ordinal_x: 3, ordinal_y: 0 }, { ordinal_x: 4, ordinal_y: 0 }, { ordinal_x: 5, ordinal_y: 0 }, { ordinal_x: 6, ordinal_y: 0 }, { ordinal_x: 7, ordinal_y: 0 }, { ordinal_x: 8, ordinal_y: 0 }, { ordinal_x: 9, ordinal_y: 0 }, { ordinal_x: 0, ordinal_y: 1 }, { ordinal_x: 1, ordinal_y: 1 }, { ordinal_x: 2, ordinal_y: 1 }, { ordinal_x: 3, ordinal_y: 1 }, { ordinal_x: 4, ordinal_y: 1 }, { ordinal_x: 5, ordinal_y: 1 }, { ordinal_x: 6, ordinal_y: 1 }, { ordinal_x: 7, ordinal_y: 1 }, { ordinal_x: 8, ordinal_y: 1 }, { ordinal_x: 9, ordinal_y: 1 }, { ordinal_x: 0, ordinal_y: 2 }, { ordinal_x: 1, ordinal_y: 2 }, { ordinal_x: 2, ordinal_y: 2 }, { ordinal_x: 3, ordinal_y: 2 }, { ordinal_x: 4, ordinal_y: 2 }, { ordinal_x: 5, ordinal_y: 2 }, { ordinal_x: 6, ordinal_y: 2 }, { ordinal_x: 7, ordinal_y: 2 }, { ordinal_x: 8, ordinal_y: 2 }, { ordinal_x: 9, ordinal_y: 2 }, ] # after initializing the oridinal positions, derive the pixel # locations assuming that the width and height are 80 args.state.inventory_area.each { |i| set_inventory_position args, i } # if you want to see the result you can use the Ruby function called "puts". # Uncomment this line to see the value. # puts args.state.inventory_area # You can see all things written via puts in DragonRuby's Console, or under logs/log.txt. # To bring up DragonRuby's Console, press the ~ key within the game. end # define all the oridinal positions of the craft slots if !args.state.craft_area args.state.craft_area = [ { ordinal_x: 0, ordinal_y: 0 }, { ordinal_x: 0, ordinal_y: 1 }, { ordinal_x: 0, ordinal_y: 2 }, { ordinal_x: 1, ordinal_y: 0 }, { ordinal_x: 1, ordinal_y: 1 }, { ordinal_x: 1, ordinal_y: 2 }, { ordinal_x: 2, ordinal_y: 0 }, { ordinal_x: 2, ordinal_y: 1 }, { ordinal_x: 2, ordinal_y: 2 }, ] # after initializing the oridinal positions, derive the pixel # locations assuming that the width and height are 80 args.state.craft_area.each { |c| set_craft_position args, c } end end def render args # for the results area, create a sprite that show its boundaries args.outputs.primitives << { x: args.state.result_border.x, y: args.state.result_border.y, w: args.state.result_border.w, h: args.state.result_border.h, path: 'sprites/border-black.png' } # for each inventory spot, create a sprite # args.outputs.primitives is how DragonRuby performs a render. # Adding a single hash or multiple hashes to this array will tell # DragonRuby to render those primitives on that frame. # The .map function on Array is used instead of any kind of looping. # .map returns a new object for every object within an Array. args.outputs.primitives << args.state.inventory_area.map do |a| { x: a.x, y: a.y, w: a.w, h: a.h, path: 'sprites/border-black.png' } end # for each craft spot, create a sprite args.outputs.primitives << args.state.craft_area.map do |a| { x: a.x, y: a.y, w: a.w, h: a.h, path: 'sprites/border-black.png' } end # after the borders have been rendered, render the # items within those slots (and allow for highlighting) # if an item isn't currently being held allow_inventory_highlighting = !args.state.held_item # go through each item and render them # use Array's find_all method to remove any items that are currently being held args.state.items.find_all { |item| item[:location] != :held }.map do |item| # if an item is currently being held, don't render it in it's spot within the # inventory or craft area (this is handled via the find_all method). # the item_prefab returns a hash containing all the visual components of an item. # the main sprite, the black background, the quantity text, and a hover indication # if the mouse is currently hovering over the item. args.outputs.primitives << item_prefab(args, item, allow_inventory_highlighting, args.inputs.mouse) end # The last thing we want to render is the item currently being held. args.outputs.primitives << item_prefab(args, args.state.held_item, allow_inventory_highlighting, args.inputs.mouse) args.outputs.primitives << args.state.click_ripples # render a mouse cursor since we have the OS cursor hidden args.outputs.primitives << { x: args.inputs.mouse.x - 5, y: args.inputs.mouse.y - 5, w: 10, h: 10, path: 'sprites/circle-gray.png', a: 128 } end # Alrighty! This is where all the fun happens def input args # if the mouse is clicked and not item is currently being held # args.state.held_item is nil when the game starts. # If the player clicks, the property args.inputs.mouse.click will # be a non nil value, we don't want to process any of the code here # if the mouse hasn't been clicked return if !args.inputs.mouse.click # if a click occurred, add a ripple to the ripple queue args.state.click_ripples << { x: args.inputs.mouse.x - 5, y: args.inputs.mouse.y - 5, w: 10, h: 10, path: 'sprites/circle-gray.png', a: 128 } # if the mouse has been clicked, and no item is currently held... if !args.state.held_item # see if any of the items intersect the pointer using the inside_rect? method # the find method will either return the first object that returns true # for the match clause, or it'll return nil if nothing matches the match clause found = args.state.items.find do |item| # for each item in args.state.items, run the following boolean check args.inputs.mouse.click.point.inside_rect?(item) end # if an item intersects the mouse pointer, then set the item's location to :held and # set args.state.held_item to the item for later reference if found args.state.held_item = found found[:location] = :held end # if the mouse is clicked and an item is currently beign held.... elsif args.state.held_item # determine if a slot within the craft area was clicked craft_area = args.state.craft_area.find { |a| args.inputs.mouse.click.point.inside_rect? a } # also determine if a slot within the inventory area was clicked inventory_area = args.state.inventory_area.find { |a| args.inputs.mouse.click.point.inside_rect? a } # if the click was within a craft area if craft_area # check to see if an item is already there and ignore the click if an item is found # item_at_craft_slot is a helper method that returns an item or nil for a given oridinal # position item_already_there = item_at_craft_slot args, craft_area[:ordinal_x], craft_area[:ordinal_y] # if an item *doesn't* exist in the craft area if !item_already_there # if the quantity they are currently holding is greater than 1 if args.state.held_item[:quantity] > 1 # remove one item (creating a seperate item of the same type), and place it # at the oridinal position and location of the craft area # the .merge method on Hash creates a new Hash, but updates any values # passed as arguments to merge new_item = args.state.held_item.merge(quantity: 1, location: :craft, ordinal_x: craft_area[:ordinal_x], ordinal_y: craft_area[:ordinal_y]) # after the item is crated, place it into the args.state.items collection args.state.items << new_item # then subtract one from the held item args.state.held_item[:quantity] -= 1 # if the craft area is available and there is only one item being held elsif args.state.held_item[:quantity] == 1 # instead of creating any new items just set the location of the held item # to the oridinal position of the craft area, and then nil out the # held item state so that a new item can be picked up args.state.held_item[:location] = :craft args.state.held_item[:ordinal_x] = craft_area[:ordinal_x] args.state.held_item[:ordinal_y] = craft_area[:ordinal_y] args.state.held_item = nil end end # if the selected area is an inventory area (as opposed to within the craft area) elsif inventory_area # check to see if there is already an item in that inventory slot # the item_at_inventory_slot helper method returns an item or nil item_already_there = item_at_inventory_slot args, inventory_area[:ordinal_x], inventory_area[:ordinal_y] # if there is already an item there, and the item types/id match if item_already_there && item_already_there[:id] == args.state.held_item[:id] # then merge the item quantities held_quantity = args.state.held_item[:quantity] item_already_there[:quantity] += held_quantity # remove the item being held from the items collection (since it's quantity is now 0) args.state.items.reject! { |i| i[:location] == :held } # nil out the held_item so a new item can be picked up args.state.held_item = nil # if there currently isn't an item there, then put the held item in the slot elsif !item_already_there args.state.held_item[:location] = :inventory args.state.held_item[:ordinal_x] = inventory_area[:ordinal_x] args.state.held_item[:ordinal_y] = inventory_area[:ordinal_y] # nil out the held_item so a new item can be picked up args.state.held_item = nil end end end end # the calc method is executed after input def calc args # make sure that the real position of the inventory # items are updated every frame to ensure that they # are placed correctly given their location and oridinal positions # instead of using .map, here we use .each (since we are not returning a new item and just updating the items in place) args.state.items.each do |item| # based on the location of the item, invoke the correct pixel conversion method if item[:location] == :inventory set_inventory_position args, item elsif item[:location] == :craft set_craft_position args, item elsif item[:location] == :held # if the item is held, center the item around the mouse pointer args.state.held_item.x = args.inputs.mouse.x - args.state.held_item.w.half args.state.held_item.y = args.inputs.mouse.y - args.state.held_item.h.half end end # for each hash/sprite in the click ripples queue, # expand its size by 20 percent and decrease its alpha # by 10. args.state.click_ripples.each do |ripple| delta_w = ripple.w * 1.2 - ripple.w delta_h = ripple.h * 1.2 - ripple.h ripple.x -= delta_w.half ripple.y -= delta_h.half ripple.w += delta_w ripple.h += delta_h ripple.a -= 10 end # remove any items from the collection where the alpha value is less than equal to # zero using the reject! method (reject with an exclamation point at the end changes the # array value in place, while reject without the exclamation point returns a new array). args.state.click_ripples.reject! { |ripple| ripple.a <= 0 } end # helper function for finding an item at a craft slot def item_at_craft_slot args, ordinal_x, ordinal_y args.state.items.find { |i| i[:location] == :craft && i[:ordinal_x] == ordinal_x && i[:ordinal_y] == ordinal_y } end # helper function for finding an item at an inventory slot def item_at_inventory_slot args, ordinal_x, ordinal_y args.state.items.find { |i| i[:location] == :inventory && i[:ordinal_x] == ordinal_x && i[:ordinal_y] == ordinal_y } end # helper function that creates a visual representation of an item def item_prefab args, item, should_highlight, mouse return nil unless item overlay = nil x = item.x y = item.y w = item.w h = item.h if should_highlight && mouse.point.inside_rect?(item) overlay = { x: x, y: y, w: w, h: h, path: "sprites/square-blue.png", a: 130, } end [ # sprites are hashes with a path property, this is the main sprite { x: x, y: y, w: args.state.sprite_size, h: args.state.sprite_size, path: item[:path], }, # this represents the black area in the bottom right corner of the main sprite so that the # quantity is visible { x: x + 55, y: y, w: 25, h: 25, path: "sprites/square-black.png", }, # sprites are hashes with a path property # labels are hashes with a text property { x: x + 56, y: y + 22, text: "#{item[:quantity]}", r: 255, g: 255, b: 255, }, # this is the mouse overlay, if the overlay isn't applicable, then this value will be nil (nil values will not be rendered) overlay ] end # helper function for deriving the position of an item within inventory def set_inventory_position args, item item.x = args.state.inventory_border.x + item[:ordinal_x] * 80 item.y = (args.state.inventory_border.y + args.state.inventory_border.h - 80) - item[:ordinal_y] * 80 item.w = 80 item.h = 80 end # helper function for deriving the position of an item within the craft area def set_craft_position args, item item.x = args.state.craft_border.x + item[:ordinal_x] * 80 item.y = (args.state.craft_border.y + args.state.inventory_border.h - 80) - item[:ordinal_y] * 80 item.w = 80 item.h = 80 end # Any lines outside of a function will be executed when the file is reloaded. # So every time you save main.rb, the game will be reset. # Comment out the line below if you don't want this to happen. $gtk.resetDev Tools - Add Buttons To Console - main.rb
# ./samples/99_genre_dev_tools/add_buttons_to_console/app/main.rb # You can customize the buttons that show up in the Console. class GTK::Console::Menu # STEP 1: Override the custom_buttons function. def custom_buttons [ (button id: :yay, # row for button row: 3, # column for button col: 10, # text text: "I AM CUSTOM", # when clicked call the custom_button_clicked function method: :custom_button_clicked), (button id: :yay, # row for button row: 3, # column for button col: 9, # text text: "CUSTOM ALSO", # when clicked call the custom_button_also_clicked function method: :custom_button_also_clicked) ] end # STEP 2: Define the function that should be called. def custom_button_clicked log "* INFO: I AM CUSTOM was clicked!" end def custom_button_also_clicked log "* INFO: Custom Button Clicked at #{Kernel.global_tick_count}!" all_buttons_as_string = $gtk.console.menu.buttons.map do |b| <<-S.strip ** id: #{b[:id]} :PROPERTIES: :id: :#{b[:id]} :method: :#{b[:method]} :text: #{b[:text]} :END: S end.join("\n") log <<-S * INFO: Here are all the buttons: #{all_buttons_as_string} S end end def tick args args.outputs.labels << [args.grid.center.x, args.grid.center.y, "Open the DragonRuby Console to see the custom menu items.", 0, 1] endDev Tools - Animation Creator Starting Point - main.rb
# ./samples/99_genre_dev_tools/animation_creator_starting_point/app/main.rb class OneBitLowrezPaint attr_gtk def tick outputs.background_color = [0, 0, 0] defaults render_instructions render_canvas render_buttons_frame_selection render_animation_frame_thumbnails render_animation input_mouse_click input_keyboard calc_auto_export calc_buttons_frame_selection calc_animation_frames process_queue_create_sprite process_queue_reset_sprite process_queue_update_rt_animation_frame end def defaults state.animation_frames_per_second = 12 queues.create_sprite ||= [] queues.reset_sprite ||= [] queues.update_rt_animation_frame ||= [] if !state.animation_frames state.animation_frames ||= [] add_animation_frame_to_end end state.last_mouse_down ||= 0 state.last_mouse_up ||= 0 state.buttons_frame_selection.left = 10 state.buttons_frame_selection.top = grid.top - 10 state.buttons_frame_selection.size = 20 defaults_canvas_sprite state.edit_mode ||= :drawing end def defaults_canvas_sprite rt_canvas.size = 16 rt_canvas.zoom = 30 rt_canvas.width = rt_canvas.size * rt_canvas.zoom rt_canvas.height = rt_canvas.size * rt_canvas.zoom rt_canvas.sprite = { x: 0, y: 0, w: rt_canvas.width, h: rt_canvas.height, path: :rt_canvas }.center_inside_rect(x: 0, y: 0, w: 640, h: 720) return unless state.tick_count == 1 outputs[:rt_canvas].width = rt_canvas.width outputs[:rt_canvas].height = rt_canvas.height outputs[:rt_canvas].sprites << (rt_canvas.size + 1).map_with_index do |x| (rt_canvas.size + 1).map_with_index do |y| path = 'sprites/square-white.png' path = 'sprites/square-blue.png' if x == 7 || x == 8 { x: x * rt_canvas.zoom, y: y * rt_canvas.zoom, w: rt_canvas.zoom, h: rt_canvas.zoom, path: path, a: 50 } end end end def render_instructions instructions = <<-S * Instructions: - All data is stored in the ~canvas~ directory. - Hold ~d~ to set the edit mode to erase. - Release ~d~ to set the edit mode drawing. - Press ~a~ to added a frame to the end. - Press ~b~ to select the previous frame. - Press ~f~ to select the next frame. - Press ~c~ to copy a frame. - Press ~v~ to paste a copied frame into the selected frame. - Press ~x~ to delete the currently selected frame. - Press ~w~ to save the canvas and export all sprites. - Press ~l~ to load the canvas. S instructions.strip.each_line.with_index do |l, i| outputs.labels << { x: 840, y: 500 - (i * 20), text: "#{l}", r: 180, g: 180, b: 180, size_enum: -3 } end end def render_canvas return if state.tick_count.zero? outputs.sprites << rt_canvas.sprite end def render_buttons_frame_selection args.outputs.primitives << state.buttons_frame_selection.items.map_with_index do |b, i| label = { x: b.x + state.buttons_frame_selection.size.half, y: b.y, text: "#{i + 1}", r: 180, g: 180, b: 180, size_enum: -4, alignment_enum: 1 }.label selection_border = b.merge(r: 40, g: 40, b: 40).border if i == state.animation_frames_selected_index selection_border = b.merge(r: 40, g: 230, b: 200).border end [selection_border, label] end end def render_animation_frame_thumbnails return if state.tick_count.zero? outputs[:current_animation_frame].width = rt_canvas.size outputs[:current_animation_frame].height = rt_canvas.size outputs[:current_animation_frame].solids << selected_animation_frame[:pixels].map_with_index do |f, i| { x: f.x, y: f.y, w: 1, h: 1, r: 255, g: 255, b: 255 } end outputs.sprites << rt_canvas.sprite.merge(path: :current_animation_frame) state.animation_frames.map_with_index do |animation_frame, animation_frame_index| outputs.sprites << state.buttons_frame_selection[:items][animation_frame_index][:inner_rect] .merge(path: animation_frame[:rt_name]) end end def render_animation sprite_index = 0.frame_index count: state.animation_frames.length, hold_for: 60 / state.animation_frames_per_second, repeat: true args.outputs.sprites << { x: 700 - 8, y: 120, w: 16, h: 16, path: (sprite_path sprite_index) } args.outputs.sprites << { x: 700 - 16, y: 230, w: 32, h: 32, path: (sprite_path sprite_index) } args.outputs.sprites << { x: 700 - 32, y: 360, w: 64, h: 64, path: (sprite_path sprite_index) } args.outputs.sprites << { x: 700 - 64, y: 520, w: 128, h: 128, path: (sprite_path sprite_index) } end def input_mouse_click if inputs.mouse.up state.last_mouse_up = state.tick_count elsif inputs.mouse.moved && user_is_editing? edit_current_animation_frame inputs.mouse.point end return unless inputs.mouse.click clicked_frame_button = state.buttons_frame_selection.items.find do |b| inputs.mouse.point.inside_rect? b end if (clicked_frame_button) state.animation_frames_selected_index = clicked_frame_button[:index] end if (inputs.mouse.point.inside_rect? rt_canvas.sprite) state.last_mouse_down = state.tick_count edit_current_animation_frame inputs.mouse.point end end def input_keyboard # w to save if inputs.keyboard.key_down.w t = Time.now state.save_description = "Time: #{t} (#{t.to_i})" gtk.serialize_state 'canvas/state.txt', state gtk.serialize_state "tmp/canvas_backups/#{t.to_i}/state.txt", state animation_frames.each_with_index do |animation_frame, i| queues.update_rt_animation_frame << { index: i, at: state.tick_count + i, queue_sprite_creation: true } queues.create_sprite << { index: i, at: state.tick_count + animation_frames.length + i, path_override: "tmp/canvas_backups/#{t.to_i}/sprite-#{i}.png" } end gtk.notify! "Canvas saved." end # l to load if inputs.keyboard.key_down.l args.state = gtk.deserialize_state 'canvas/state.txt' animation_frames.each_with_index do |a, i| queues.update_rt_animation_frame << { index: i, at: state.tick_count + i, queue_sprite_creation: true } end gtk.notify! "Canvas loaded." end # d to go into delete mode, release to paint if inputs.keyboard.key_held.d state.edit_mode = :erasing gtk.notify! "Erasing." if inputs.keyboard.key_held.d == (state.tick_count - 1) elsif inputs.keyboard.key_up.d state.edit_mode = :drawing gtk.notify! "Drawing." end # a to add a frame to the end if inputs.keyboard.key_down.a queues.create_sprite << { index: state.animation_frames_selected_index, at: state.tick_count } queues.create_sprite << { index: state.animation_frames_selected_index + 1, at: state.tick_count } add_animation_frame_to_end gtk.notify! "Frame added to end." end # c or t to copy if (inputs.keyboard.key_down.c || inputs.keyboard.key_down.t) state.clipboard = [selected_animation_frame[:pixels]].flatten gtk.notify! "Current frame copied." end # v or q to paste if (inputs.keyboard.key_down.v || inputs.keyboard.key_down.q) && state.clipboard selected_animation_frame[:pixels] = [state.clipboard].flatten queues.update_rt_animation_frame << { index: state.animation_frames_selected_index, at: state.tick_count, queue_sprite_creation: true } gtk.notify! "Pasted." end # f to go forward/next frame if (inputs.keyboard.key_down.f) if (state.animation_frames_selected_index == (state.animation_frames.length - 1)) state.animation_frames_selected_index = 0 else state.animation_frames_selected_index += 1 end gtk.notify! "Next frame." end # b to go back/previous frame if (inputs.keyboard.key_down.b) if (state.animation_frames_selected_index == 0) state.animation_frames_selected_index = state.animation_frames.length - 1 else state.animation_frames_selected_index -= 1 end gtk.notify! "Previous frame." end # x to delete frame if (inputs.keyboard.key_down.x) && animation_frames.length > 1 state.clipboard = selected_animation_frame[:pixels] state.animation_frames = animation_frames.find_all { |v| v[:index] != state.animation_frames_selected_index } if state.animation_frames_selected_index >= state.animation_frames.length state.animation_frames_selected_index = state.animation_frames.length - 1 end gtk.notify! "Frame deleted." end end def calc_auto_export return if user_is_editing? return if state.last_mouse_up.elapsed_time != 30 # auto export current animation frame if there is no editing for 30 ticks queues.create_sprite << { index: state.animation_frames_selected_index, at: state.tick_count } end def calc_buttons_frame_selection state.buttons_frame_selection.items = animation_frames.length.map_with_index do |i| { x: state.buttons_frame_selection.left + i * state.buttons_frame_selection.size, y: state.buttons_frame_selection.top - state.buttons_frame_selection.size, inner_rect: { x: (state.buttons_frame_selection.left + 2) + i * state.buttons_frame_selection.size, y: (state.buttons_frame_selection.top - state.buttons_frame_selection.size + 2), w: 16, h: 16, }, w: state.buttons_frame_selection.size, h: state.buttons_frame_selection.size, index: i } end end def calc_animation_frames animation_frames.each_with_index do |animation_frame, i| animation_frame[:index] = i animation_frame[:rt_name] = "animation_frame_#{i}" end end def process_queue_create_sprite sprites_to_create = queues.create_sprite .find_all { |h| h[:at].elapsed? } queues.create_sprite = queues.create_sprite - sprites_to_create sprites_to_create.each do |h| export_animation_frame h[:index], h[:path_override] end end def process_queue_reset_sprite sprites_to_reset = queues.reset_sprite .find_all { |h| h[:at].elapsed? } queues.reset_sprite -= sprites_to_reset sprites_to_reset.each { |h| gtk.reset_sprite (sprite_path h[:index]) } end def process_queue_update_rt_animation_frame animation_frames_to_update = queues.update_rt_animation_frame .find_all { |h| h[:at].elapsed? } queues.update_rt_animation_frame -= animation_frames_to_update animation_frames_to_update.each do |h| update_animation_frame_render_target animation_frames[h[:index]] if h[:queue_sprite_creation] queues.create_sprite << { index: h[:index], at: state.tick_count + 1 } end end end def update_animation_frame_render_target animation_frame return if !animation_frame outputs[animation_frame[:rt_name]].width = state.rt_canvas.size outputs[animation_frame[:rt_name]].height = state.rt_canvas.size outputs[animation_frame[:rt_name]].solids << animation_frame[:pixels].map do |f| { x: f.x, y: f.y, w: 1, h: 1, r: 255, g: 255, b: 255 } end end def animation_frames state.animation_frames end def add_animation_frame_to_end animation_frames << { index: animation_frames.length, pixels: [], rt_name: "animation_frame_#{animation_frames.length}" } state.animation_frames_selected_index = (animation_frames.length - 1) queues.update_rt_animation_frame << { index: state.animation_frames_selected_index, at: state.tick_count, queue_sprite_creation: true } end def sprite_path i "canvas/sprite-#{i}.png" end def export_animation_frame i, path_override = nil return if !state.animation_frames[i] outputs.screenshots << state.buttons_frame_selection .items[i][:inner_rect] .merge(path: path_override || (sprite_path i)) outputs.screenshots << state.buttons_frame_selection .items[i][:inner_rect] .merge(path: "tmp/sprite_backups/#{Time.now.to_i}-sprite-#{i}.png") queues.reset_sprite << { index: i, at: state.tick_count } end def selected_animation_frame state.animation_frames[state.animation_frames_selected_index] end def edit_current_animation_frame point draw_area_point = (to_draw_area point) if state.edit_mode == :drawing && (!selected_animation_frame[:pixels].include? draw_area_point) selected_animation_frame[:pixels] << draw_area_point queues.update_rt_animation_frame << { index: state.animation_frames_selected_index, at: state.tick_count, queue_sprite_creation: !user_is_editing? } elsif state.edit_mode == :erasing && (selected_animation_frame[:pixels].include? draw_area_point) selected_animation_frame[:pixels] = selected_animation_frame[:pixels].reject { |p| p == draw_area_point } queues.update_rt_animation_frame << { index: state.animation_frames_selected_index, at: state.tick_count, queue_sprite_creation: !user_is_editing? } end end def user_is_editing? state.last_mouse_down > state.last_mouse_up end def to_draw_area point x, y = point x -= rt_canvas.sprite.x y -= rt_canvas.sprite.y { x: x.idiv(rt_canvas.zoom), y: y.idiv(rt_canvas.zoom) } end def rt_canvas state.rt_canvas ||= state.new_entity(:rt_canvas) end def queues state.queues ||= state.new_entity(:queues) end end $game = OneBitLowrezPaint.new def tick args $game.args = args $game.tick end # $gtk.resetDev Tools - Tile Editor Starting Point - main.rb
# ./samples/99_genre_dev_tools/tile_editor_starting_point/app/main.rb =begin APIs listing that haven't been encountered in previous sample apps: - to_s: Returns a string representation of an object. For example, if we had 500.to_s the string "500" would be returned. Similar to to_i, which returns an integer representation of an object. - Ceil: Returns an integer number greater than or equal to the original with no decimal. Reminders: - ARRAY#inside_rect?: Returns true or false depending on if the point is inside a rect. - args.outputs.labels: An array. The values generate a label. The parameters are [X, Y, TEXT, SIZE, ALIGNMENT, RED, GREEN, BLUE, ALPHA, FONT STYLE] For more information about labels, go to mygame/documentation/02-labels.md. - args.outputs.sprites: An array. The values generate a sprite. The parameters are [X, Y, WIDTH, HEIGHT, IMAGE PATH] For more information about sprites, go to mygame/documentation/05-sprites.md. - args.outputs.solids: An array. The values generate a solid. The parameters are [X, Y, WIDTH, HEIGHT, RED, GREEN, BLUE] For more information about solids, go to mygame/documentation/03-solids-and-borders.md. - args.outputs.lines: An array. The values generate a line. The parameters are [X1, Y1, X2, Y2, RED, GREEN, BLUE] For more information about lines, go to mygame/documentation/04-lines.md. - args.state.new_entity: Used when we want to create a new object, like a sprite or button. In this sample app, new_entity is used to create a new button that clears the grid. (Remember, you can use state to define ANY property and it will be retained across frames.) =end # This sample app shows an empty grid that the user can paint in. There are different image tiles that # the user can use to fill the grid, and the "Clear" button can be pressed to clear the grid boxes. class TileEditor attr_accessor :inputs, :state, :outputs, :grid, :args # Runs all the methods necessary for the game to function properly. def tick defaults render check_click draw_buttons end # Sets default values # Initialization only happens in the first frame # NOTE: The values of some of these variables may seem confusingly large at first. # The gridSize is 1600 but it seems a lot smaller on the screen, for example. # But keep in mind that by using the "W", "A", "S", and "D" keys, you can # move the grid's view in all four directions for more grid spaces. def defaults state.tileCords ||= [] state.tileQuantity ||= 6 state.tileSize ||= 50 state.tileSelected ||= 1 state.tempX ||= 50 state.tempY ||= 500 state.speed ||= 4 state.centerX ||= 4000 state.centerY ||= 4000 state.originalCenter ||= [state.centerX, state.centerY] state.gridSize ||= 1600 state.lineQuantity ||= 50 state.increment ||= state.gridSize / state.lineQuantity state.gridX ||= [] state.gridY ||= [] state.filled_squares ||= [] state.grid_border ||= [390, 140, 500, 500] get_grid unless state.tempX == 0 # calls get_grid in the first frame only determineTileCords unless state.tempX == 0 # calls determineTileCords in first frame state.tempX = 0 # sets tempX to 0; the two methods aren't called again end # Calculates the placement of lines or separators in the grid def get_grid curr_x = state.centerX - (state.gridSize / 2) # starts at left of grid deltaX = state.gridSize / state.lineQuantity # finds distance to place vertical lines evenly through width of grid (state.lineQuantity + 2).times do state.gridX << curr_x # adds curr_x to gridX collection curr_x += deltaX # increment curr_x by the distance between vertical lines end curr_y = state.centerY - (state.gridSize / 2) # starts at bottom of grid deltaY = state.gridSize / state.lineQuantity # finds distance to place horizontal lines evenly through height of grid (state.lineQuantity + 2).times do state.gridY << curr_y # adds curr_y to gridY collection curr_y += deltaY # increments curr_y to distance between horizontal lines end end # Determines coordinate positions of patterned tiles (on the left side of the grid) def determineTileCords state.tempCounter ||= 1 # initializes tempCounter to 1 state.tileQuantity.times do # there are 6 different kinds of tiles state.tileCords += [[state.tempX, state.tempY, state.tempCounter]] # adds tile definition to collection state.tempX += 75 # increments tempX to put horizontal space between the patterned tiles state.tempCounter += 1 # increments tempCounter if state.tempX > 200 # if tempX exceeds 200 pixels state.tempX = 50 # a new row of patterned tiles begins state.tempY -= 75 # the new row is 75 pixels lower than the previous row end end end # Outputs objects (grid, tiles, etc) onto the screen def render outputs.sprites << state.tileCords.map do # outputs tileCords collection using images in sprites folder |x, y, order| [x, y, state.tileSize, state.tileSize, 'sprites/image' + order.to_s + ".png"] end outputs.solids << [0, 0, 1280, 720, 255, 255, 255] # outputs white background add_grid # outputs grid print_title # outputs title and current tile pattern end # Creates a grid by outputting vertical and horizontal grid lines onto the screen. # Outputs sprites for the filled_squares collection onto the screen. def add_grid # Outputs the grid's border. outputs.borders << state.grid_border temp = 0 # Before looking at the code that outputs the vertical and horizontal lines in the # grid, take note of the fact that: # grid_border[1] refers to the border's bottom line (running horizontally), # grid_border[2] refers to the border's top line (running (horizontally), # grid_border[0] refers to the border's left line (running vertically), # and grid_border[3] refers to the border's right line (running vertically). # [2] # ---------- # | | # [0] | | [3] # | | # ---------- # [1] # Calculates the positions and outputs the x grid lines in the color gray. state.gridX.map do # perform an action on all elements of the gridX collection |x| temp += 1 # increment temp # if x's value is greater than (or equal to) the x value of the border's left side # and less than (or equal to) the x value of the border's right side if x >= state.centerX - (state.grid_border[2] / 2) && x <= state.centerX + (state.grid_border[2] / 2) delta = state.centerX - 640 # vertical lines have the same starting and ending x positions # starting y and ending y positions lead from the bottom of the border to the top of the border outputs.lines << [x - delta, state.grid_border[1], x - delta, state.grid_border[1] + state.grid_border[2], 150, 150, 150] # sets definition of vertical line and outputs it end end temp = 0 # Calculates the positions and outputs the y grid lines in the color gray. state.gridY.map do # perform an action on all elements of the gridY collection |y| temp += 1 # increment temp # if y's value is greater than (or equal to) the y value of the border's bottom side # and less than (or equal to) the y value of the border's top side if y >= state.centerY - (state.grid_border[3] / 2) && y <= state.centerY + (state.grid_border[3] / 2) delta = state.centerY - 393 # horizontal lines have the same starting and ending y positions # starting x and ending x positions lead from the left side of the border to the right side of the border outputs.lines << [state.grid_border[0], y - delta, state.grid_border[0] + state.grid_border[3], y - delta, 150, 150, 150] # sets definition of horizontal line and outputs it end end # Sets values and outputs sprites for the filled_squares collection. state.filled_squares.map do # perform an action on every element of the filled_squares collection |x, y, w, h, sprite| # if x's value is greater than (or equal to) the x value of 17 pixels to the left of the border's left side # and less than (or equal to) the x value of the border's right side # and y's value is greater than (or equal to) the y value of the border's bottom side # and less than (or equal to) the y value of 25 pixels above the border's top side # NOTE: The allowance of 17 pixels and 25 pixels is due to the fact that a grid box may be slightly cut off or # not entirely visible in the grid's view (until it is moved using "W", "A", "S", "D") if x >= state.centerX - (state.grid_border[2] / 2) - 17 && x <= state.centerX + (state.grid_border[2] / 2) && y >= state.centerY - (state.grid_border[3] / 2) && y <= state.centerY + (state.grid_border[3] / 2) + 25 # calculations done to place sprites in grid spaces that are meant to filled in # mess around with the x and y values and see how the sprite placement changes outputs.sprites << [x - state.centerX + 630, y - state.centerY + 360, w, h, sprite] end end # outputs a white solid along the left side of the grid (change the color and you'll be able to see it against the white background) # state.increment subtracted in x parameter because solid's position is denoted by bottom left corner # state.increment subtracted in y parameter to avoid covering the title label outputs.primitives << [state.grid_border[0] - state.increment, state.grid_border[1] - state.increment, state.increment, state.grid_border[3] + (state.increment * 2), 255, 255, 255].solid # outputs a white solid along the right side of the grid # state.increment subtracted from y parameter to avoid covering title label outputs.primitives << [state.grid_border[0] + state.grid_border[2], state.grid_border[1] - state.increment, state.increment, state.grid_border[3] + (state.increment * 2), 255, 255, 255].solid # outputs a white solid along the bottom of the grid # state.increment subtracted from y parameter to avoid covering last row of grid boxes outputs.primitives << [state.grid_border[0] - state.increment, state.grid_border[1] - state.increment, state.grid_border[2] + (2 * state.increment), state.increment, 255, 255, 255].solid # outputs a white solid along the top of the grid outputs.primitives << [state.grid_border[0] - state.increment, state.grid_border[1] + state.grid_border[3], state.grid_border[2] + (2 * state.increment), state.increment, 255, 255, 255].solid end # Outputs title and current tile pattern def print_title outputs.labels << [640, 700, 'Mouse to Place Tile, WASD to Move Around', 7, 1] # title label outputs.lines << horizontal_separator(660, 0, 1280) # outputs horizontal separator outputs.labels << [1050, 500, 'Current:', 3, 1] # outputs Current label outputs.sprites << [1110, 474, state.tileSize / 2, state.tileSize / 2, 'sprites/image' + state.tileSelected.to_s + ".png"] # outputs sprite of current tile pattern using images in sprites folder; output is half the size of a tile end # Sets the starting position, ending position, and color for the horizontal separator. def horizontal_separator y, x, x2 [x, y, x2, y, 150, 150, 150] # definition of separator; horizontal line means same starting/ending y end # Checks if the mouse is being clicked or dragged def check_click if inputs.keyboard.key_down.r # if the "r" key is pressed down $dragon.reset end if inputs.mouse.down #is mouse up or down? state.mouse_held = true if inputs.mouse.position.x < state.grid_border[0] # if mouse's x position is inside the grid's borders state.tileCords.map do # perform action on all elements of tileCords collection |x, y, order| # if mouse's x position is greater than (or equal to) the starting x position of a tile # and the mouse's x position is also less than (or equal to) the ending x position of that tile, # and the mouse's y position is greater than (or equal to) the starting y position of that tile, # and the mouse's y position is also less than (or equal to) the ending y position of that tile, # (BASICALLY, IF THE MOUSE'S POSITION IS WITHIN THE STARTING AND ENDING POSITIONS OF A TILE) if inputs.mouse.position.x >= x && inputs.mouse.position.x <= x + state.tileSize && inputs.mouse.position.y >= y && inputs.mouse.position.y <= y + state.tileSize state.tileSelected = order # that tile is selected end end end elsif inputs.mouse.up # otherwise, if the mouse is in the "up" state state.mouse_held = false # mouse is not held down or dragged state.mouse_dragging = false end if state.mouse_held && # mouse needs to be down !inputs.mouse.click && # must not be first click ((inputs.mouse.previous_click.point.x - inputs.mouse.position.x).abs > 15 || (inputs.mouse.previous_click.point.y - inputs.mouse.position.y).abs > 15) # Need to move 15 pixels before "drag" state.mouse_dragging = true end # if mouse is clicked inside grid's border, search_lines method is called with click input type if ((inputs.mouse.click) && (inputs.mouse.click.point.inside_rect? state.grid_border)) search_lines(inputs.mouse.click.point, :click) # if mouse is dragged inside grid's border, search_lines method is called with drag input type elsif ((state.mouse_dragging) && (inputs.mouse.position.inside_rect? state.grid_border)) search_lines(inputs.mouse.position, :drag) end # Changes grid's position on screen by moving it up, down, left, or right. # centerX is incremented by speed if the "d" key is pressed and if that sum is less than # the original left side of the center plus half the grid, minus half the top border of grid. # MOVES GRID RIGHT (increasing x) state.centerX += state.speed if inputs.keyboard.key_held.d && (state.centerX + state.speed) < state.originalCenter[0] + (state.gridSize / 2) - (state.grid_border[2] / 2) # centerX is decremented by speed if the "a" key is pressed and if that difference is greater than # the original left side of the center minus half the grid, plus half the top border of grid. # MOVES GRID LEFT (decreasing x) state.centerX -= state.speed if inputs.keyboard.key_held.a && (state.centerX - state.speed) > state.originalCenter[0] - (state.gridSize / 2) + (state.grid_border[2] / 2) # centerY is incremented by speed if the "w" key is pressed and if that sum is less than # the original bottom of the center plus half the grid, minus half the right border of grid. # MOVES GRID UP (increasing y) state.centerY += state.speed if inputs.keyboard.key_held.w && (state.centerY + state.speed) < state.originalCenter[1] + (state.gridSize / 2) - (state.grid_border[3] / 2) # centerY is decremented by speed if the "s" key is pressed and if the difference is greater than # the original bottom of the center minus half the grid, plus half the right border of grid. # MOVES GRID DOWN (decreasing y) state.centerY -= state.speed if inputs.keyboard.key_held.s && (state.centerY - state.speed) > state.originalCenter[1] - (state.gridSize / 2) + (state.grid_border[3] / 2) end # Performs calculations on the gridX and gridY collections, and sets values. # Sets the definition of a grid box, including the image that it is filled with. def search_lines (point, input_type) point.x += state.centerX - 630 # increments x and y point.y += state.centerY - 360 findX = 0 findY = 0 increment = state.gridSize / state.lineQuantity # divides grid by number of separators state.gridX.map do # perform an action on every element of collection |x| # findX increments x by 10 if point.x is less than that sum and findX is currently 0 findX = x + 10 if point.x < (x + 10) && findX == 0 end state.gridY.map do |y| # findY is set to y if point.y is less than that value and findY is currently 0 findY = y if point.y < (y) && findY == 0 end # position of a box is denoted by bottom left corner, which is why the increment is being subtracted grid_box = [findX - (increment.ceil), findY - (increment.ceil), increment.ceil, increment.ceil, "sprites/image" + state.tileSelected.to_s + ".png"] # sets sprite definition if input_type == :click # if user clicks their mouse if state.filled_squares.include? grid_box # if grid box is already filled in state.filled_squares.delete grid_box # box is cleared and removed from filled_squares else state.filled_squares << grid_box # otherwise, box is filled in and added to filled_squares end elsif input_type == :drag # if user drags mouse unless state.filled_squares.include? grid_box # unless grid box dragged over is already filled in state.filled_squares << grid_box # box is filled in and added to filled_squares end end end # Creates a "Clear" button using labels and borders. def draw_buttons x, y, w, h = 390, 50, 240, 50 state.clear_button ||= state.new_entity(:button_with_fade) # x and y positions are set to display "Clear" label in center of the button # Try changing first two parameters to simply x, y and see what happens to the text placement state.clear_button.label ||= [x + w.half, y + h.half + 10, "Clear", 0, 1] state.clear_button.border ||= [x, y, w, h] # definition of button's border # If the mouse is clicked inside the borders of the clear button if inputs.mouse.click && inputs.mouse.click.point.inside_rect?(state.clear_button.border) state.clear_button.clicked_at = inputs.mouse.click.created_at # value is frame of mouse click state.filled_squares.clear # filled squares collection is emptied (squares are cleared) inputs.mouse.previous_click = nil # no previous click end outputs.labels << state.clear_button.label # outputs clear button outputs.borders << state.clear_button.border # When the clear button is clicked, the color of the button changes # and the transparency changes, as well. If you change the time from # 0.25.seconds to 1.25.seconds or more, the change will last longer. if state.clear_button.clicked_at outputs.solids << [x, y, w, h, 0, 180, 80, 255 * state.clear_button.clicked_at.ease(0.25.seconds, :flip)] end end end $tile_editor = TileEditor.new def tick args $tile_editor.inputs = args.inputs $tile_editor.grid = args.grid $tile_editor.args = args $tile_editor.outputs = args.outputs $tile_editor.state = args.state $tile_editor.tick tick_instructions args, "Roll your own tile editor. CLICK to select a sprite. CLICK in grid to place sprite. WASD to move around." end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.mouse.click || args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.escape args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(click to dismiss instructions)" , -2, 1, 255, 255, 255].label endLowrez - Resolution 64x64 - lowrez.rb
# ./samples/99_genre_lowrez/resolution_64x64/app/lowrez.rb # Emulation of a 64x64 canvas. Don't change this file unless you know what you're doing :-) # Head over to main.rb and study the code there. LOWREZ_SIZE = 64 LOWREZ_ZOOM = 10 LOWREZ_ZOOMED_SIZE = LOWREZ_SIZE * LOWREZ_ZOOM LOWREZ_X_OFFSET = (1280 - LOWREZ_ZOOMED_SIZE).half LOWREZ_Y_OFFSET = ( 720 - LOWREZ_ZOOMED_SIZE).half LOWREZ_FONT_XL = -1 LOWREZ_FONT_XL_HEIGHT = 20 LOWREZ_FONT_LG = -3.5 LOWREZ_FONT_LG_HEIGHT = 15 LOWREZ_FONT_MD = -6 LOWREZ_FONT_MD_HEIGHT = 10 LOWREZ_FONT_SM = -8.5 LOWREZ_FONT_SM_HEIGHT = 5 LOWREZ_FONT_PATH = 'fonts/lowrez.ttf' class LowrezOutputs attr_accessor :width, :height def initialize args @args = args @background_color ||= [0, 0, 0] @args.outputs.background_color = @background_color end def background_color @background_color ||= [0, 0, 0] end def background_color= opts @background_color = opts @args.outputs.background_color = @background_color outputs_lowrez.solids << [0, 0, LOWREZ_SIZE, LOWREZ_SIZE, @background_color] end def outputs_lowrez return @args.outputs if @args.state.tick_count <= 0 return @args.outputs[:lowrez] end def solids outputs_lowrez.solids end def borders outputs_lowrez.borders end def sprites outputs_lowrez.sprites end def labels outputs_lowrez.labels end def default_label { x: 0, y: 63, text: "", size_enum: LOWREZ_FONT_SM, alignment_enum: 0, r: 0, g: 0, b: 0, a: 255, font: LOWREZ_FONT_PATH } end def lines outputs_lowrez.lines end def primitives outputs_lowrez.primitives end def click return nil unless @args.inputs.mouse.click mouse end def mouse_click click end def mouse_down @args.inputs.mouse.down end def mouse_up @args.inputs.mouse.up end def mouse [ ((@args.inputs.mouse.x - LOWREZ_X_OFFSET).idiv(LOWREZ_ZOOM)), ((@args.inputs.mouse.y - LOWREZ_Y_OFFSET).idiv(LOWREZ_ZOOM)) ] end def mouse_position mouse end def keyboard @args.inputs.keyboard end end class GTK::Args def init_lowrez return if @lowrez @lowrez = LowrezOutputs.new self end def lowrez @lowrez end end module GTK class Runtime alias_method :__original_tick_core__, :tick_core unless Runtime.instance_methods.include?(:__original_tick_core__) def tick_core @args.init_lowrez __original_tick_core__ return if @args.state.tick_count <= 0 @args.render_target(:lowrez) .labels .each do |l| l.y += 1 end @args.render_target(:lowrez) .lines .each do |l| l.y += 1 l.y2 += 1 l.y2 += 1 if l.y1 != l.y2 l.x2 += 1 if l.x1 != l.x2 end @args.outputs .sprites << { x: 320, y: 40, w: 640, h: 640, source_x: 0, source_y: 0, source_w: 64, source_h: 64, path: :lowrez } end end endLowrez - Resolution 64x64 - main.rb
# ./samples/99_genre_lowrez/resolution_64x64/app/main.rb require 'app/lowrez.rb' def tick args # How to set the background color args.lowrez.background_color = [255, 255, 255] # ==== HELLO WORLD ====================================================== # Steps to get started: # 1. ~def tick args~ is the entry point for your game. # 2. There are quite a few code samples below, remove the "##" # before each line and save the file to see the changes. # 3. 0, 0 is in bottom left and 63, 63 is in top right corner. # 4. Be sure to come to the discord channel if you need # more help: [[http://discord.dragonruby.org]]. # Commenting and uncommenting code: # - Add a "#" infront of lines to comment out code # - Remove the "#" infront of lines to comment out code # Invoke the hello_world subroutine/method hello_world args # <---- add a "#" to the beginning of the line to stop running this subroutine/method. # ======================================================================= # ==== HOW TO RENDER A LABEL ============================================ # Uncomment the line below to invoke the how_to_render_a_label subroutine/method. # Note: The method is defined in this file with the signature ~def how_to_render_a_label args~ # Scroll down to the method to see the details. # Remove the "#" at the beginning of the line below # how_to_render_a_label args # <---- remove the "#" at the begging of this line to run the method # ======================================================================= # ==== HOW TO RENDER A FILLED SQUARE (SOLID) ============================ # Remove the "#" at the beginning of the line below # how_to_render_solids args # ======================================================================= # ==== HOW TO RENDER AN UNFILLED SQUARE (BORDER) ======================== # Remove the "#" at the beginning of the line below # how_to_render_borders args # ======================================================================= # ==== HOW TO RENDER A LINE ============================================= # Remove the "#" at the beginning of the line below # how_to_render_lines args # ======================================================================= # == HOW TO RENDER A SPRITE ============================================= # Remove the "#" at the beginning of the line below # how_to_render_sprites args # ======================================================================= # ==== HOW TO MOVE A SPRITE BASED OFF OF USER INPUT ===================== # Remove the "#" at the beginning of the line below # how_to_move_a_sprite args # ======================================================================= # ==== HOW TO ANIMATE A SPRITE (SEPERATE PNGS) ========================== # Remove the "#" at the beginning of the line below # how_to_animate_a_sprite args # ======================================================================= # ==== HOW TO ANIMATE A SPRITE (SPRITE SHEET) =========================== # Remove the "#" at the beginning of the line below # how_to_animate_a_sprite_sheet args # ======================================================================= # ==== HOW TO DETERMINE COLLISION ============================================= # Remove the "#" at the beginning of the line below # how_to_determine_collision args # ======================================================================= # ==== HOW TO CREATE BUTTONS ================================================== # Remove the "#" at the beginning of the line below # how_to_create_buttons args # ======================================================================= # ==== The line below renders a debug grid, mouse information, and current tick render_debug args end def hello_world args args.lowrez.solids << { x: 0, y: 64, w: 10, h: 10, r: 255 } args.lowrez.labels << { x: 32, y: 63, text: "lowrezjam 2020", size_enum: LOWREZ_FONT_SM, alignment_enum: 1, r: 0, g: 0, b: 0, a: 255, font: LOWREZ_FONT_PATH } args.lowrez.sprites << { x: 32 - 10, y: 32 - 10, w: 20, h: 20, path: 'sprites/lowrez-ship-blue.png', a: args.state.tick_count % 255, angle: args.state.tick_count % 360 } end # ======================================================================= # ==== HOW TO RENDER A LABEL ============================================ # ======================================================================= def how_to_render_a_label args # NOTE: Text is aligned from the TOP LEFT corner # Render an EXTRA LARGE/XL label (remove the "#" in front of each line below) args.lowrez.labels << { x: 0, y: 57, text: "Hello World", size_enum: LOWREZ_FONT_XL, r: 0, g: 0, b: 0, a: 255, font: LOWREZ_FONT_PATH } # Render a LARGE/LG label (remove the "#" in front of each line below) args.lowrez.labels << { x: 0, y: 36, text: "Hello World", size_enum: LOWREZ_FONT_LG, r: 0, g: 0, b: 0, a: 255, font: LOWREZ_FONT_PATH } # Render a MEDIUM/MD label (remove the "#" in front of each line below) args.lowrez.labels << { x: 0, y: 20, text: "Hello World", size_enum: LOWREZ_FONT_MD, r: 0, g: 0, b: 0, a: 255, font: LOWREZ_FONT_PATH } # Render a SMALL/SM label (remove the "#" in front of each line below) args.lowrez.labels << { x: 0, y: 9, text: "Hello World", size_enum: LOWREZ_FONT_SM, r: 0, g: 0, b: 0, a: 255, font: LOWREZ_FONT_PATH } # You are provided args.lowrez.default_label which returns a Hash that you # can ~merge~ properties with # Example 1 args.lowrez.labels << args.lowrez .default_label .merge(text: "Default") # Example 2 args.lowrez.labels << args.lowrez .default_label .merge(x: 31, text: "Default", r: 128, g: 128, b: 128) end ## # ============================================================================= ## # ==== HOW TO RENDER FILLED SQUARES (SOLIDS) ================================== ## # ============================================================================= def how_to_render_solids args # Render a red square at 0, 0 with a width and height of 1 args.lowrez.solids << { x: 0, y: 0, w: 1, h: 1, r: 255, g: 0, b: 0, a: 255 } # Render a red square at 1, 1 with a width and height of 2 args.lowrez.solids << { x: 1, y: 1, w: 2, h: 2, r: 255, g: 0, b: 0, a: 255 } # Render a red square at 3, 3 with a width and height of 3 args.lowrez.solids << { x: 3, y: 3, w: 3, h: 3, r: 255, g: 0, b: 0 } # Render a red square at 6, 6 with a width and height of 4 args.lowrez.solids << { x: 6, y: 6, w: 4, h: 4, r: 255, g: 0, b: 0 } end ## # ============================================================================= ## # ==== HOW TO RENDER UNFILLED SQUARES (BORDERS) =============================== ## # ============================================================================= def how_to_render_borders args # Render a red square at 0, 0 with a width and height of 3 args.lowrez.borders << { x: 0, y: 0, w: 3, h: 3, r: 255, g: 0, b: 0, a: 255 } # Render a red square at 3, 3 with a width and height of 3 args.lowrez.borders << { x: 3, y: 3, w: 4, h: 4, r: 255, g: 0, b: 0, a: 255 } # Render a red square at 5, 5 with a width and height of 4 args.lowrez.borders << { x: 7, y: 7, w: 5, h: 5, r: 255, g: 0, b: 0, a: 255 } end ## # ============================================================================= ## # ==== HOW TO RENDER A LINE =================================================== ## # ============================================================================= def how_to_render_lines args # Render a horizontal line at the bottom args.lowrez.lines << { x: 0, y: 0, x2: 63, y2: 0, r: 255 } # Render a vertical line at the left args.lowrez.lines << { x: 0, y: 0, x2: 0, y2: 63, r: 255 } # Render a diagonal line starting from the bottom left and going to the top right args.lowrez.lines << { x: 0, y: 0, x2: 63, y2: 63, r: 255 } end ## # ============================================================================= ## # == HOW TO RENDER A SPRITE =================================================== ## # ============================================================================= def how_to_render_sprites args # Loop 10 times and create 10 sprites in 10 positions # Render a sprite at the bottom left with a width and height of 5 and a path of 'sprites/lowrez-ship-blue.png' 10.times do |i| args.lowrez.sprites << { x: i * 5, y: i * 5, w: 5, h: 5, path: 'sprites/lowrez-ship-blue.png' } end # Given an array of positions create sprites positions = [ { x: 10, y: 42 }, { x: 15, y: 45 }, { x: 22, y: 33 }, ] positions.each do |position| # use Ruby's ~Hash#merge~ function to create a sprite args.lowrez.sprites << position.merge(path: 'sprites/lowrez-ship-red.png', w: 5, h: 5) end end ## # ============================================================================= ## # ==== HOW TO ANIMATE A SPRITE (SEPERATE PNGS) ========================== ## # ============================================================================= def how_to_animate_a_sprite args # STEP 1: Define when you want the animation to start. The animation in this case will start in 3 seconds start_animation_on_tick = 180 # STEP 2: Get the frame_index given the start tick. sprite_index = start_animation_on_tick.frame_index count: 7, # how many sprites? hold_for: 4, # how long to hold each sprite? repeat: true # should it repeat? # STEP 3: frame_index will return nil if the frame hasn't arrived yet if sprite_index # if the sprite_index is populated, use it to determine the sprite path and render it sprite_path = "sprites/explosion-#{sprite_index}.png" args.lowrez.sprites << { x: 0, y: 0, w: 64, h: 64, path: sprite_path } else # if the sprite_index is nil, render a countdown instead countdown_in_seconds = ((start_animation_on_tick - args.state.tick_count) / 60).round(1) args.lowrez.labels << args.lowrez .default_label .merge(x: 32, y: 32, text: "Count Down: #{countdown_in_seconds}", alignment_enum: 1) end # render the current tick and the resolved sprite index args.lowrez.labels << args.lowrez .default_label .merge(x: 0, y: 11, text: "Tick: #{args.state.tick_count}") args.lowrez.labels << args.lowrez .default_label .merge(x: 0, y: 5, text: "sprite_index: #{sprite_index}") end ## # ============================================================================= ## # ==== HOW TO ANIMATE A SPRITE (SPRITE SHEET) ================================= ## # ============================================================================= def how_to_animate_a_sprite_sheet args # STEP 1: Define when you want the animation to start. The animation in this case will start in 3 seconds start_animation_on_tick = 180 # STEP 2: Get the frame_index given the start tick. sprite_index = start_animation_on_tick.frame_index count: 7, # how many sprites? hold_for: 4, # how long to hold each sprite? repeat: true # should it repeat? # STEP 3: frame_index will return nil if the frame hasn't arrived yet if sprite_index # if the sprite_index is populated, use it to determine the source rectangle and render it args.lowrez.sprites << { x: 0, y: 0, w: 64, h: 64, path: "sprites/explosion-sheet.png", source_x: 32 * sprite_index, source_y: 0, source_w: 32, source_h: 32 } else # if the sprite_index is nil, render a countdown instead countdown_in_seconds = ((start_animation_on_tick - args.state.tick_count) / 60).round(1) args.lowrez.labels << args.lowrez .default_label .merge(x: 32, y: 32, text: "Count Down: #{countdown_in_seconds}", alignment_enum: 1) end # render the current tick and the resolved sprite index args.lowrez.labels << args.lowrez .default_label .merge(x: 0, y: 11, text: "tick: #{args.state.tick_count}") args.lowrez.labels << args.lowrez .default_label .merge(x: 0, y: 5, text: "sprite_index: #{sprite_index}") end ## # ============================================================================= ## # ==== HOW TO STORE STATE, ACCEPT INPUT, AND RENDER SPRITE BASED OFF OF STATE = ## # ============================================================================= def how_to_move_a_sprite args args.lowrez.labels << args.lowrez .default_label .merge(x: 32, y: 62, text: "Use Arrow Keys", alignment_enum: 1) args.lowrez.labels << args.lowrez .default_label .merge(x: 32, y: 56, text: "Use WASD", alignment_enum: 1) args.lowrez.labels << args.lowrez .default_label .merge(x: 32, y: 50, text: "Or Click", alignment_enum: 1) # set the initial values for x and y using ||= ("or equal operator") args.state.ship.x ||= 0 args.state.ship.y ||= 0 # if a mouse click occurs, update the ship's x and y to be the location of the click if args.lowrez.mouse_click args.state.ship.x = args.lowrez.mouse_click.x args.state.ship.y = args.lowrez.mouse_click.y end # if a or left arrow is pressed/held, decrement the ships x position if args.lowrez.keyboard.left args.state.ship.x -= 1 end # if d or right arrow is pressed/held, increment the ships x position if args.lowrez.keyboard.right args.state.ship.x += 1 end # if s or down arrow is pressed/held, decrement the ships y position if args.lowrez.keyboard.down args.state.ship.y -= 1 end # if w or up arrow is pressed/held, increment the ships y position if args.lowrez.keyboard.up args.state.ship.y += 1 end # render the sprite to the screen using the position stored in args.state.ship args.lowrez.sprites << { x: args.state.ship.x, y: args.state.ship.y, w: 5, h: 5, path: 'sprites/lowrez-ship-blue.png', # parameters beyond this point are optional angle: 0, # Note: rotation angle is denoted in degrees NOT radians r: 255, g: 255, b: 255, a: 255 } end # ======================================================================= # ==== HOW TO DETERMINE COLLISION ======================================= # ======================================================================= def how_to_determine_collision args # Render the instructions args.lowrez.labels << args.lowrez .default_label .merge(x: 32, y: 62, text: "Click Anywhere", alignment_enum: 1) # if a mouse click occurs: # - set ship_one if it isn't set # - set ship_two if it isn't set # - otherwise reset ship one and ship two if args.lowrez.mouse_click # is ship_one set? if !args.state.ship_one args.state.ship_one = { x: args.lowrez.mouse_click.x - 10, y: args.lowrez.mouse_click.y - 10, w: 20, h: 20 } # is ship_one set? elsif !args.state.ship_two args.state.ship_two = { x: args.lowrez.mouse_click.x - 10, y: args.lowrez.mouse_click.y - 10, w: 20, h: 20 } # should we reset? else args.state.ship_one = nil args.state.ship_two = nil end end # render ship one if it's set if args.state.ship_one # use Ruby's .merge method which is available on ~Hash~ to set the sprite and alpha # render ship one args.lowrez.sprites << args.state.ship_one.merge(path: 'sprites/lowrez-ship-blue.png', a: 100) end if args.state.ship_two # use Ruby's .merge method which is available on ~Hash~ to set the sprite and alpha # render ship two args.lowrez.sprites << args.state.ship_two.merge(path: 'sprites/lowrez-ship-red.png', a: 100) end # if both ship one and ship two are set, then determine collision if args.state.ship_one && args.state.ship_two # collision is determined using the intersect_rect? method if args.state.ship_one.intersect_rect? args.state.ship_two # if collision occurred, render the words collision! args.lowrez.labels << args.lowrez .default_label .merge(x: 31, y: 5, text: "Collision!", alignment_enum: 1) else # if collision occurred, render the words no collision. args.lowrez.labels << args.lowrez .default_label .merge(x: 31, y: 5, text: "No Collision.", alignment_enum: 1) end else # if both ship one and ship two aren't set, then render -- args.lowrez.labels << args.lowrez .default_label .merge(x: 31, y: 6, text: "--", alignment_enum: 1) end end ## # ============================================================================= ## # ==== HOW TO CREATE BUTTONS ================================================== ## # ============================================================================= def how_to_create_buttons args # Define a button style args.state.button_style = { w: 62, h: 10, r: 80, g: 80, b: 80 } args.state.label_style = { r: 80, g: 80, b: 80 } # Render instructions args.state.button_message ||= "Press a Button!" args.lowrez.labels << args.lowrez .default_label .merge(args.state.label_style) .merge(x: 32, y: 62, text: args.state.button_message, alignment_enum: 1) # Creates button one using a border and a label args.state.button_one_border = args.state.button_style.merge( x: 1, y: 32) args.lowrez.borders << args.state.button_one_border args.lowrez.labels << args.lowrez .default_label .merge(args.state.label_style) .merge(x: args.state.button_one_border.x + 2, y: args.state.button_one_border.y + LOWREZ_FONT_SM_HEIGHT + 2, text: "Button One") # Creates button two using a border and a label args.state.button_two_border = args.state.button_style.merge( x: 1, y: 20) args.lowrez.borders << args.state.button_two_border args.lowrez.labels << args.lowrez .default_label .merge(args.state.label_style) .merge(x: args.state.button_two_border.x + 2, y: args.state.button_two_border.y + LOWREZ_FONT_SM_HEIGHT + 2, text: "Button Two") # Initialize the state variable that tracks which button was clicked to "" (empty stringI args.state.last_button_clicked ||= "--" # If a click occurs, check to see if either button one, or button two was clicked # using the inside_rect? method of the mouse # set args.state.last_button_clicked accordingly if args.lowrez.mouse_click if args.lowrez.mouse_click.inside_rect? args.state.button_one_border args.state.last_button_clicked = "One Clicked!" elsif args.lowrez.mouse_click.inside_rect? args.state.button_two_border args.state.last_button_clicked = "Two Clicked!" else args.state.last_button_clicked = "--" end end # Render the current value of args.state.last_button_clicked args.lowrez.labels << args.lowrez .default_label .merge(args.state.label_style) .merge(x: 32, y: 5, text: args.state.last_button_clicked, alignment_enum: 1) end def render_debug args if !args.state.grid_rendered 65.map_with_index do |i| args.outputs.static_debug << { x: LOWREZ_X_OFFSET, y: LOWREZ_Y_OFFSET + (i * 10), x2: LOWREZ_X_OFFSET + LOWREZ_ZOOMED_SIZE, y2: LOWREZ_Y_OFFSET + (i * 10), r: 128, g: 128, b: 128, a: 80 }.line args.outputs.static_debug << { x: LOWREZ_X_OFFSET + (i * 10), y: LOWREZ_Y_OFFSET, x2: LOWREZ_X_OFFSET + (i * 10), y2: LOWREZ_Y_OFFSET + LOWREZ_ZOOMED_SIZE, r: 128, g: 128, b: 128, a: 80 }.line end end args.state.grid_rendered = true args.state.last_click ||= 0 args.state.last_up ||= 0 args.state.last_click = args.state.tick_count if args.lowrez.mouse_down # you can also use args.lowrez.click args.state.last_up = args.state.tick_count if args.lowrez.mouse_up args.state.label_style = { size_enum: -1.5 } args.state.watch_list = [ "args.state.tick_count is: #{args.state.tick_count}", "args.lowrez.mouse_position is: #{args.lowrez.mouse_position.x}, #{args.lowrez.mouse_position.y}", "args.lowrez.mouse_down tick: #{args.state.last_click || "never"}", "args.lowrez.mouse_up tick: #{args.state.last_up || "false"}", ] args.outputs.debug << args.state .watch_list .map_with_index do |text, i| { x: 5, y: 720 - (i * 20), text: text, size_enum: -1.5 }.label end args.outputs.debug << { x: 640, y: 25, text: "INFO: dev mode is currently enabled. Comment out the invocation of ~render_debug~ within the ~tick~ method to hide the debug layer.", size_enum: -0.5, alignment_enum: 1 }.label end $gtk.resetPlatformer - Clepto Frog - main.rb
# ./samples/99_genre_platformer/clepto_frog/app/main.rb MAP_FILE_PATH = 'app/map.txt' require 'app/map.rb' class CleptoFrog attr_gtk def render_ending state.game_over_at ||= state.tick_count outputs.labels << [640, 700, "Clepto Frog", 4, 1] if state.tick_count >= (state.game_over_at + 120) outputs.labels << [640, 620, "\"I... I.... don't believe it.\" - New Guy", 4, 1, 0, 0, 0, 255 * (state.game_over_at + 120).ease(60)] end if state.tick_count >= (state.game_over_at + 240) outputs.labels << [640, 580, "\"He actually stole all the mugs?\" - New Guy", 4, 1, 0, 0, 0, 255 * (state.game_over_at + 240).ease(60)] end if state.tick_count >= (state.game_over_at + 360) outputs.labels << [640, 540, "\"Kind of feel bad STARTING HIM WITH NOTHING again.\" - New Guy", 4, 1, 0, 0, 0, 255 * (state.game_over_at + 360).ease(60)] end outputs.sprites << [640 - 50, 360 - 50, 100, 100, "sprites/square-green.png"] outputs.labels << [640, 300, "Current Time: #{"%.2f" % state.stuff_time}", 4, 1] outputs.labels << [640, 270, "Best Time: #{"%.2f" % state.stuff_best_time}", 4, 1] if state.tick_count >= (state.game_over_at + 550) restart_game end end def restart_game state.world = nil state.x = nil state.y = nil state.dx = nil state.dy = nil state.stuff_score = 0 state.stuff_time = 0 state.intro_tick_count = nil defaults state.game_start_at = state.tick_count state.scene = :game state.game_over_at = nil end def render_intro outputs.labels << [640, 700, "Clepto Frog", 4, 1] if state.tick_count >= 120 outputs.labels << [640, 620, "\"Uh... your office has a pet frog?\" - New Guy", 4, 1, 0, 0, 0, 255 * 120.ease(60)] end if state.tick_count >= 240 outputs.labels << [640, 580, "\"Yep! His name is Clepto.\" - Jim", 4, 1, 0, 0, 0, 255 * 240.ease(60)] end if state.tick_count >= 360 outputs.labels << [640, 540, "\"Uh...\" - New Guy", 4, 1, 0, 0, 0, 255 * 360.ease(60)] end if state.tick_count >= 480 outputs.labels << [640, 500, "\"He steals mugs while we're away...\" - Jim", 4, 1, 0, 0, 0, 255 * 480.ease(60)] end if state.tick_count >= 600 outputs.labels << [640, 460, "\"It's not a big deal, we take them back in the morning.\" - Jim", 4, 1, 0, 0, 0, 255 * 600.ease(60)] end outputs.sprites << [640 - 50, 360 - 50, 100, 100, "sprites/square-green.png"] if state.tick_count == 800 state.scene = :game state.game_start_at = state.tick_count end end def tick defaults if state.scene == :intro && state.tick_count <= 800 render_intro elsif state.scene == :ending render_ending else render end calc process_inputs end def defaults state.scene ||= :intro state.stuff_score ||= 0 state.stuff_time ||= 0 state.stuff_best_time ||= nil state.camera_x ||= 0 state.camera_y ||= 0 state.target_camera_scale ||= 1 state.camera_scale ||= 1 state.tongue_length ||= 100 state.dev_action ||= :collision_mode state.action ||= :aiming state.tongue_angle ||= 90 state.tile_size = 64 state.gravity = -0.1 state.air = -0.01 state.player_width = 60 state.player_height = 60 state.collision_tolerance = 0.0 state.previous_tile_size ||= state.tile_size state.x ||= 2400 state.y ||= 200 state.dy ||= 0 state.dx ||= 0 attempt_load_world_from_file state.world_lookup ||= { } state.world_collision_rects ||= [] state.mode ||= :creating state.select_menu ||= [0, 720, 1280, 720] state.sprite_quantity ||= 20 state.sprite_coords ||= [] state.banner_coords ||= [640, 680 + 720] state.sprite_selected ||= 1 state.map_saved_at ||= 0 state.intro_tick_count ||= state.tick_count if state.sprite_coords == [] count = 1 temp_x = 165 temp_y = 500 + 720 state.sprite_quantity.times do state.sprite_coords += [[temp_x, temp_y, count]] temp_x += 100 count += 1 if temp_x > 1280 - (165 + 50) temp_x = 165 temp_y -= 75 end end end end def start_of_tongue x = nil, y = nil x ||= state.x y ||= state.y [ x + state.player_width.half, y + state.player_height.half ] end def stage_definition outputs.sprites << [vx(0), vy(0), vw(10000), vw(5875), 'sprites/level-map.png'] end def render stage_definition start_of_tongue_render = [vx(start_of_tongue.x), vy(start_of_tongue.y)] end_of_tongue_render = [vx(end_of_tongue.x), vy(end_of_tongue.y)] if state.anchor_point anchor_point_render = [vx(state.anchor_point.x), vy(state.anchor_point.y)] outputs.sprites << { x: start_of_tongue_render.x, y: start_of_tongue_render.y, w: vw(2), h: args.geometry.distance(start_of_tongue_render, anchor_point_render), path: 'sprites/square-pink.png', angle_anchor_y: 0, angle: state.tongue_angle - 90 } else outputs.sprites << { x: vx(start_of_tongue.x), y: vy(start_of_tongue.y), w: vw(2), h: vh(state.tongue_length), path: 'sprites/square-pink.png', angle_anchor_y: 0, angle: state.tongue_angle - 90 } end outputs.sprites << state.objects.map { |o| [vx(o.x), vy(o.y), vw(o.w), vh(o.h), o.path] } if state.god_mode # SHOW HIDE COLLISIONS outputs.sprites << state.world.map do |x, y, w, h| x = vx(x) y = vy(y) if x > -80 && x < 1280 && y > -80 && y < 720 { x: x, y: y, w: vw(w || state.tile_size), h: vh(h || state.tile_size), path: 'sprites/square-gray.png', a: 128 } end end end render_player outputs.sprites << [vx(2315), vy(45), vw(569), vh(402), 'sprites/square-blue.png', 0, 40] # Label in top left of the screen outputs.primitives << [20, 640, 180, 70, 255, 255, 255, 128].solid outputs.primitives << [30, 700, "Stuff: #{state.stuff_score} of #{$mugs.count}", 1].label outputs.primitives << [30, 670, "Time: #{"%.2f" % state.stuff_time}", 1].label if state.god_mode if state.map_saved_at > 0 && state.map_saved_at.elapsed_time < 120 outputs.primitives << [920, 670, 'Map has been exported!', 1, 0, 50, 100, 50].label end # Creates sprite following mouse to help indicate which sprite you have selected outputs.primitives << [inputs.mouse.position.x, inputs.mouse.position.y, state.tile_size, state.tile_size, 'sprites/square-indigo.png', 0, 100].sprite end render_mini_map outputs.primitives << [0, 0, 1280, 720, 255, 255, 255, 255 * state.game_start_at.ease(60, :flip)].solid end def render_mini_map x, y = 1170, 10 outputs.primitives << [x, y, 100, 58, 0, 0, 0, 200].solid outputs.primitives << [x + args.state.x.fdiv(100) - 1, y + args.state.y.fdiv(100) - 1, 2, 2, 0, 255, 0].solid t_start = start_of_tongue t_end = end_of_tongue outputs.primitives << [ x + t_start.x.fdiv(100), y + t_start.y.fdiv(100), x + t_end.x.fdiv(100), y + t_end.y.fdiv(100), 255, 255, 255 ].line state.objects.each do |o| outputs.primitives << [x + o.x.fdiv(100) - 1, y + o.y.fdiv(100) - 1, 2, 2, 200, 200, 0].solid end end def calc_camera percentage_override = nil percentage = percentage_override || (0.2 * state.camera_scale) target_scale = state.target_camera_scale distance_scale = target_scale - state.camera_scale state.camera_scale += distance_scale * percentage target_x = state.x * state.target_camera_scale target_y = state.y * state.target_camera_scale distance_x = target_x - (state.camera_x + 640) distance_y = target_y - (state.camera_y + 360) state.camera_x += distance_x * percentage if distance_x.abs > 1 state.camera_y += distance_y * percentage if distance_y.abs > 1 state.camera_x = 0 if state.camera_x < 0 state.camera_y = 0 if state.camera_y < 0 end def vx x (x * state.camera_scale) - state.camera_x end def vy y (y * state.camera_scale) - state.camera_y end def vw w w * state.camera_scale end def vh h h * state.camera_scale end def calc calc_camera calc_world_lookup calc_player calc_on_floor calc_score end def set_camera_scale v = nil return if v < 0.1 state.target_camera_scale = v end def process_inputs_god_mode return unless state.god_mode if inputs.keyboard.key_down.equal_sign || (inputs.keyboard.equal_sign && state.tick_count.mod_zero?(10)) set_camera_scale state.camera_scale + 0.1 elsif inputs.keyboard.key_down.hyphen || (inputs.keyboard.hyphen && state.tick_count.mod_zero?(10)) set_camera_scale state.camera_scale - 0.1 elsif inputs.keyboard.eight || inputs.keyboard.zero set_camera_scale 1 end if input_up? state.y += 10 state.dy = 0 elsif input_down? state.y -= 10 state.dy = 0 end if input_left? state.x -= 10 state.dx = 0 elsif input_right? state.x += 10 state.dx = 0 end end def process_inputs if state.scene == :game process_inputs_player_movement process_inputs_god_mode elsif state.scene == :intro if args.inputs.keyboard.key_down.enter || args.inputs.keyboard.key_down.space if Kernel.tick_count < 600 Kernel.tick_count = 600 end end end end def input_up? inputs.keyboard.w || inputs.keyboard.up || inputs.keyboard.k end def input_up_released? inputs.keyboard.key_up.w || inputs.keyboard.key_up.up || inputs.keyboard.key_up.k end def input_down? inputs.keyboard.s || inputs.keyboard.down || inputs.keyboard.j end def input_down_released? inputs.keyboard.key_up.s || inputs.keyboard.key_up.down || inputs.keyboard.key_up.j end def input_left? inputs.keyboard.a || inputs.keyboard.left || inputs.keyboard.h end def input_right? inputs.keyboard.d || inputs.keyboard.right || inputs.keyboard.l end def set_object path, w, h state.object = path state.object_w = w state.object_h = h end def collision_mode state.dev_action = :collision_mode end def process_inputs_player_movement if inputs.keyboard.key_down.g state.god_mode = !state.god_mode puts state.god_mode end if inputs.keyboard.key_down.u && state.dev_action == :collision_mode state.world = state.world[0..-2] state.world_lookup = {} end if inputs.keyboard.key_down.space && !state.anchor_point state.tongue_length = 0 state.action = :shooting outputs.sounds << 'sounds/shooting.wav' elsif inputs.keyboard.key_down.space state.action = :aiming state.anchor_point = nil state.tongue_length = 100 end if state.anchor_point if input_up? if state.tongue_length >= 105 state.tongue_length -= 5 state.dy += 0.8 end elsif input_down? state.tongue_length += 5 state.dy -= 0.8 end if input_left? && state.dx > 1 state.dx *= 0.98 elsif input_left? && state.dx < -1 state.dx *= 1.03 elsif input_left? && !state.on_floor state.dx -= 3 elsif input_right? && state.dx > 1 state.dx *= 1.03 elsif input_right? && state.dx < -1 state.dx *= 0.98 elsif input_right? && !state.on_floor state.dx += 3 end else if input_left? state.tongue_angle += 1.5 state.tongue_angle = state.tongue_angle elsif input_right? state.tongue_angle -= 1.5 state.tongue_angle = state.tongue_angle end end end def add_floors # floors state.world += [ [0, 0, 10000, 40], [0, 1670, 3250, 60], [6691, 1653, 3290, 60], [1521, 3792, 7370, 60], [0, 5137, 3290, 60] ] end def attempt_load_world_from_file return if state.world # exported_world = gtk.read_file(MAP_FILE_PATH) state.world = [] state.objects = [] if $collisions $collisions.map do |x, y, w, h| state.world << [x, y, w, h] end add_floors # elsif exported_world # exported_world.each_line.map do |l| # tokens = l.strip.split(',') # x = tokens[0].to_i # y = tokens[1].to_i # type = tokens[2].to_i # if type == 1 # state.world << [x, y, state.tile_size, state.tile_size] # elsif type == 2 # w, h, path = tokens[3..-1] # state.objects << [x, y, w.to_i, h.to_i, path] # end # end # add_floors end if $mugs $mugs.map do |x, y, w, h, path| state.objects << [x, y, w, h, path] end end end def calc_world_lookup if state.tile_size != state.previous_tile_size state.previous_tile_size = state.tile_size state.world_lookup = {} end return if state.world_lookup.keys.length > 0 return unless state.world.length > 0 # Searches through the world and finds the cordinates that exist state.world_lookup = {} state.world.each do |x, y, w, h| state.world_lookup[[x, y, w || state.tile_size, h || state.tile_size]] = true end # Assigns collision rects for every sprite drawn state.world_collision_rects = state.world_lookup .keys .map do |x, y, w, h| s = state.tile_size w ||= s h ||= s { args: [x, y, w, h], left_right: [x, y + 4, w, h - 6], top: [x + 4, y + 6, w - 8, h - 6], bottom: [x + 1, y - 1, w - 2, h - 8], } end end def calc_pendulum return if !state.anchor_point target_x = state.anchor_point.x - start_of_tongue.x target_y = state.anchor_point.y - state.tongue_length - 5 - 20 - state.player_height diff_y = state.y - target_y if target_x > 0 state.dx += 0.6 elsif target_x < 0 state.dx -= 0.6 end if diff_y > 0 state.dy -= 0.1 elsif diff_y < 0 state.dy += 0.1 end state.dx *= 0.99 if state.dy.abs < 2 state.dy *= 0.8 else state.dy *= 0.90 end if state.tongue_length && state.y state.dy += state.tongue_angle.vector_y state.tongue_length.fdiv(1000) end end def calc_tongue_angle return unless state.anchor_point state.tongue_angle = args.geometry.angle_from state.anchor_point, start_of_tongue state.tongue_length = args.geometry.distance(start_of_tongue, state.anchor_point) state.tongue_length = state.tongue_length.greater(100) end def player_from_end_of_tongue p = state.tongue_angle.vector(state.tongue_length) derived_start = [state.anchor_point.x - p.x, state.anchor_point.y - p.y] derived_start.x -= state.player_width.half derived_start.y -= state.player_height.half derived_start end def end_of_tongue p = state.tongue_angle.vector(state.tongue_length) [start_of_tongue.x + p.x, start_of_tongue.y + p.y] end def calc_shooting return unless state.action == :shooting state.tongue_length += 30 potential_anchor = end_of_tongue if potential_anchor.x <= 0 state.anchor_point = potential_anchor state.action = :anchored outputs.sounds << 'sounds/attached.wav' elsif potential_anchor.x >= 10000 state.anchor_point = potential_anchor state.action = :anchored outputs.sounds << 'sounds/attached.wav' elsif potential_anchor.y <= 0 state.anchor_point = potential_anchor state.action = :anchored outputs.sounds << 'sounds/attached.wav' elsif potential_anchor.y >= 5875 state.anchor_point = potential_anchor state.action = :anchored outputs.sounds << 'sounds/attached.wav' else anchor_rect = [potential_anchor.x - 5, potential_anchor.y - 5, 10, 10] collision = state.world_collision_rects.find_all do |v| [v[:args].x, v[:args].y, v[:args].w, v[:args].h].intersect_rect?(anchor_rect) end.first if collision state.anchor_point = potential_anchor state.action = :anchored outputs.sounds << 'sounds/attached.wav' end end end def calc_player calc_shooting if !state.god_mode state.dy += state.gravity # Since acceleration is the change in velocity, the change in y (dy) increases every frame state.dx += state.dx * state.air end calc_pendulum calc_box_collision calc_edge_collision if !state.god_mode state.y += state.dy state.x += state.dx end calc_tongue_angle end def calc_box_collision return unless state.world_lookup.keys.length > 0 collision_floor collision_left collision_right collision_ceiling end def calc_edge_collision # Ensures that player doesn't fall below the map if next_y < 0 && state.dy < 0 state.y = 0 state.dy = state.dy.abs * 0.8 state.collision_on_y = true # Ensures player doesn't go insanely high elsif next_y > 5875 - state.tile_size && state.dy > 0 state.y = 5875 - state.tile_size state.dy = state.dy.abs * 0.8 * -1 state.collision_on_y = true end # Ensures that player remains in the horizontal range its supposed to if state.x >= 10000 - state.tile_size && state.dx > 0 state.x = 10000 - state.tile_size state.dx = state.dx.abs * 0.8 * -1 state.collision_on_x = true elsif state.x <= 0 && state.dx < 0 state.x = 0 state.dx = state.dx.abs * 0.8 state.collision_on_x = true end end def next_y state.y + state.dy end def next_x if state.dx < 0 return (state.x + state.dx) - (state.tile_size - state.player_width) else return (state.x + state.dx) + (state.tile_size - state.player_width) end end def collision_floor return unless state.dy <= 0 player_rect = [state.x, next_y, state.tile_size, state.tile_size] # Runs through all the sprites on the field and determines if the player hits the bottom of sprite (hence "-0.1" above) floor_collisions = state.world_collision_rects .find_all { |r| r[:top].intersect_rect?(player_rect, state.collision_tolerance) } .first return unless floor_collisions state.y = floor_collisions[:top].top state.dy = state.dy.abs * 0.8 end def collision_left return unless state.dx < 0 player_rect = [next_x, state.y, state.tile_size, state.tile_size] # Runs through all the sprites on the field and determines if the player hits the left side of sprite (hence "-0.1" above) left_side_collisions = state.world_collision_rects .find_all { |r| r[:left_right].intersect_rect?(player_rect, state.collision_tolerance) } .first return unless left_side_collisions state.x = left_side_collisions[:left_right].right state.dx = state.dy.abs * 0.8 state.collision_on_x = true end def collision_right return unless state.dx > 0 player_rect = [next_x, state.y, state.tile_size, state.tile_size] # Runs through all the sprites on the field and determines if the player hits the right side of sprite (hence "-0.1" above) right_side_collisions = state.world_collision_rects .find_all { |r| r[:left_right].intersect_rect?(player_rect, state.collision_tolerance) } .first return unless right_side_collisions state.x = right_side_collisions[:left_right].left - state.tile_size state.dx = state.dx.abs * 0.8 * -1 state.collision_on_x = true end def collision_ceiling return unless state.dy > 0 player_rect = [state.x, next_y, state.player_width, state.player_height] # Runs through all the sprites on the field and determines if the player hits the ceiling of sprite (hence "+0.1" above) ceil_collisions = state.world_collision_rects .find_all { |r| r[:bottom].intersect_rect?(player_rect, state.collision_tolerance) } .first return unless ceil_collisions state.y = ceil_collisions[:bottom].y - state.tile_size state.dy = state.dy.abs * 0.8 * -1 state.collision_on_y = true end def to_coord point # Integer divides (idiv) point.x to turn into grid # Then, you can just multiply each integer by state.tile_size # later and huzzah. Grid coordinates [point.x.idiv(state.tile_size), point.y.idiv(state.tile_size)] end def export_map export_string = state.world.map do |x, y| "#{x},#{y},1" end export_string += state.objects.map do |x, y, w, h, path| "#{x},#{y},2,#{w},#{h},#{path}" end gtk.write_file(MAP_FILE_PATH, export_string.join("\n")) state.map_saved_at = state.tick_count end def inputs_export_stage end def calc_score return unless state.scene == :game player = [state.x, state.y, state.player_width, state.player_height] collected = state.objects.find_all { |s| s.intersect_rect? player } state.stuff_score += collected.length if collected.length > 0 outputs.sounds << 'sounds/collectable.wav' end state.objects = state.objects.reject { |s| collected.include? s } state.stuff_time += 0.01 if state.objects.length == 0 if !state.stuff_best_time || state.stuff_time < state.stuff_best_time state.stuff_best_time = state.stuff_time end state.game_over_at = nil state.scene = :ending end end def calc_on_floor if state.action == :anchored state.on_floor = false state.on_floor_debounce = 30 else state.on_floor_debounce ||= 30 if state.dy.round != 0 state.on_floor_debounce = 30 state.on_floor = false else state.on_floor_debounce -= 1 end if state.on_floor_debounce <= 0 state.on_floor_debounce = 0 state.on_floor = true end end end def render_player path = "sprites/square-green.png" angle = 0 # outputs.labels << [vx(state.x), vy(state.y) - 30, "dy: #{state.dy.round}"] if state.action == :idle # outputs.labels << [vx(state.x), vy(state.y), "IDLE"] path = "sprites/square-green.png" elsif state.action == :aiming && !state.on_floor # outputs.labels << [vx(state.x), vy(state.y), "AIMING AIR BORN"] angle = state.tongue_angle - 90 path = "sprites/square-green.png" elsif state.action == :aiming # ON THE GROUND # outputs.labels << [vx(state.x), vy(state.y), "AIMING GROUND"] path = "sprites/square-green.png" elsif state.action == :shooting && !state.on_floor # outputs.labels << [vx(state.x), vy(state.y), "SHOOTING AIR BORN"] path = "sprites/square-green.png" angle = state.tongue_angle - 90 elsif state.action == :shooting # outputs.labels << [vx(state.x), vy(state.y), "SHOOTING ON GROUND"] path = "sprites/square-green.png" elsif state.action == :anchored # outputs.labels << [vx(state.x), vy(state.y), "SWINGING"] angle = state.tongue_angle - 90 path = "sprites/square-green.png" end outputs.sprites << [vx(state.x), vy(state.y), vw(state.player_width), vh(state.player_height), path, angle] end def render_player_old # Player if state.action == :aiming path = 'sprites\frg\idle\frog_idle.png' if state.dx > 2 #directional right sprite was here but i needa redo it path = 'sprites\frg\anchor\frog-anchor-0.png' #directional left sprite was here but i needa redo it elsif state.dx < -2 path = 'sprites\frg\anchor\frog-anchor-0.png' end outputs.sprites << [vx(state.x), vy(state.y), vw(state.player_width), vh(state.player_height), path, (state.tongue_angle - 90)] elsif state.action == :anchored || state.action == :shooting outputs.sprites << [vx(state.x), vy(state.y), vw(state.player_width), vw(state.player_height), 'sprites/animations_povfrog/frog_bwah_up.png', (state.tongue_angle - 90)] end end end $game = CleptoFrog.new def tick args if args.state.scene == :game tick_instructions args, "SPACE to SHOOT and RELEASE tongue. LEFT, RIGHT to SWING and BUILD momentum. MINIMAP in bottom right corner.", 360 end $game.args = args $game.tick end def tick_instructions args, text, y = 715 return if args.state.key_event_occurred if args.inputs.keyboard.directional_vector || args.inputs.keyboard.key_down.space args.state.key_event_occurred = true end args.outputs.debug << [0, y - 50, 1280, 60].solid args.outputs.debug << [640, y, text, 1, 1, 255, 255, 255].label args.outputs.debug << [640, y - 25, "(SPACE to dismiss instructions)" , -2, 1, 255, 255, 255].label endPlatformer - Clepto Frog - map.rb
# ./samples/99_genre_platformer/clepto_frog/app/map.rb $collisions = [ [326, 463, 64, 64], [274, 462, 64, 64], [326, 413, 64, 64], [275, 412, 64, 64], [124, 651, 64, 64], [72, 651, 64, 64], [124, 600, 64, 64], [69, 599, 64, 64], [501, 997, 64, 64], [476, 995, 64, 64], [3224, 2057, 64, 64], [3224, 1994, 64, 64], [3225, 1932, 64, 64], [3225, 1870, 64, 64], [3226, 1806, 64, 64], [3224, 1744, 64, 64], [3225, 1689, 64, 64], [3226, 1660, 64, 64], [3161, 1658, 64, 64], [3097, 1660, 64, 64], [3033, 1658, 64, 64], [2969, 1658, 64, 64], [2904, 1658, 64, 64], [2839, 1657, 64, 64], [2773, 1657, 64, 64], [2709, 1658, 64, 64], [2643, 1657, 64, 64], [2577, 1657, 64, 64], [2509, 1658, 64, 64], [2440, 1658, 64, 64], [2371, 1658, 64, 64], [2301, 1659, 64, 64], [2230, 1659, 64, 64], [2159, 1659, 64, 64], [2092, 1660, 64, 64], [2025, 1661, 64, 64], [1958, 1660, 64, 64], [1888, 1659, 64, 64], [1817, 1657, 64, 64], [1745, 1656, 64, 64], [1673, 1658, 64, 64], [1605, 1660, 64, 64], [1536, 1658, 64, 64], [1465, 1660, 64, 64], [1386, 1960, 64, 64], [1384, 1908, 64, 64], [1387, 1862, 64, 64], [1326, 1863, 64, 64], [1302, 1862, 64, 64], [1119, 1906, 64, 64], [1057, 1905, 64, 64], [994, 1905, 64, 64], [937, 1904, 64, 64], [896, 1904, 64, 64], [1001, 1845, 64, 64], [1003, 1780, 64, 64], [1003, 1718, 64, 64], [692, 1958, 64, 64], [691, 1900, 64, 64], [774, 1861, 64, 64], [712, 1861, 64, 64], [691, 1863, 64, 64], [325, 2133, 64, 64], [275, 2134, 64, 64], [326, 2082, 64, 64], [275, 2082, 64, 64], [124, 2321, 64, 64], [71, 2320, 64, 64], [123, 2267, 64, 64], [71, 2268, 64, 64], [2354, 1859, 64, 64], [2292, 1859, 64, 64], [2231, 1857, 64, 64], [2198, 1858, 64, 64], [2353, 1802, 64, 64], [2296, 1798, 64, 64], [2233, 1797, 64, 64], [2200, 1797, 64, 64], [2352, 1742, 64, 64], [2288, 1741, 64, 64], [2230, 1743, 64, 64], [2196, 1743, 64, 64], [1736, 460, 64, 64], [1735, 400, 64, 64], [1736, 339, 64, 64], [1736, 275, 64, 64], [1738, 210, 64, 64], [1735, 145, 64, 64], [1735, 87, 64, 64], [1736, 51, 64, 64], [539, 289, 64, 64], [541, 228, 64, 64], [626, 191, 64, 64], [572, 192, 64, 64], [540, 193, 64, 64], [965, 233, 64, 64], [904, 234, 64, 64], [840, 234, 64, 64], [779, 234, 64, 64], [745, 236, 64, 64], [851, 169, 64, 64], [849, 108, 64, 64], [852, 50, 64, 64], [1237, 289, 64, 64], [1236, 228, 64, 64], [1238, 197, 64, 64], [1181, 192, 64, 64], [1152, 192, 64, 64], [1443, 605, 64, 64], [1419, 606, 64, 64], [1069, 925, 64, 64], [1068, 902, 64, 64], [1024, 927, 64, 64], [1017, 897, 64, 64], [963, 926, 64, 64], [958, 898, 64, 64], [911, 928, 64, 64], [911, 896, 64, 64], [2132, 803, 64, 64], [2081, 803, 64, 64], [2131, 752, 64, 64], [2077, 751, 64, 64], [2615, 649, 64, 64], [2564, 651, 64, 64], [2533, 650, 64, 64], [2027, 156, 64, 64], [1968, 155, 64, 64], [1907, 153, 64, 64], [1873, 155, 64, 64], [2025, 95, 64, 64], [1953, 98, 64, 64], [1894, 100, 64, 64], [1870, 100, 64, 64], [2029, 45, 64, 64], [1971, 48, 64, 64], [1915, 47, 64, 64], [1873, 47, 64, 64], [3956, 288, 64, 64], [3954, 234, 64, 64], [4042, 190, 64, 64], [3990, 190, 64, 64], [3958, 195, 64, 64], [3422, 709, 64, 64], [3425, 686, 64, 64], [3368, 709, 64, 64], [3364, 683, 64, 64], [3312, 711, 64, 64], [3307, 684, 64, 64], [3266, 712, 64, 64], [3269, 681, 64, 64], [4384, 236, 64, 64], [4320, 234, 64, 64], [4257, 235, 64, 64], [4192, 234, 64, 64], [4162, 234, 64, 64], [4269, 171, 64, 64], [4267, 111, 64, 64], [4266, 52, 64, 64], [4580, 458, 64, 64], [4582, 396, 64, 64], [4582, 335, 64, 64], [4581, 275, 64, 64], [4581, 215, 64, 64], [4581, 152, 64, 64], [4582, 89, 64, 64], [4583, 51, 64, 64], [4810, 289, 64, 64], [4810, 227, 64, 64], [4895, 189, 64, 64], [4844, 191, 64, 64], [4809, 191, 64, 64], [5235, 233, 64, 64], [5176, 232, 64, 64], [5118, 230, 64, 64], [5060, 232, 64, 64], [5015, 237, 64, 64], [5123, 171, 64, 64], [5123, 114, 64, 64], [5121, 51, 64, 64], [5523, 461, 64, 64], [5123, 42, 64, 64], [5525, 401, 64, 64], [5525, 340, 64, 64], [5526, 273, 64, 64], [5527, 211, 64, 64], [5525, 150, 64, 64], [5527, 84, 64, 64], [5524, 44, 64, 64], [5861, 288, 64, 64], [5861, 229, 64, 64], [5945, 193, 64, 64], [5904, 193, 64, 64], [5856, 194, 64, 64], [6542, 234, 64, 64], [6478, 235, 64, 64], [6413, 238, 64, 64], [6348, 235, 64, 64], [6285, 236, 64, 64], [6222, 235, 64, 64], [6160, 235, 64, 64], [6097, 236, 64, 64], [6069, 237, 64, 64], [6321, 174, 64, 64], [6318, 111, 64, 64], [6320, 49, 64, 64], [6753, 291, 64, 64], [6752, 227, 64, 64], [6753, 192, 64, 64], [6692, 191, 64, 64], [6668, 193, 64, 64], [6336, 604, 64, 64], [6309, 603, 64, 64], [7264, 461, 64, 64], [7264, 395, 64, 64], [7264, 333, 64, 64], [7264, 270, 64, 64], [7265, 207, 64, 64], [7266, 138, 64, 64], [7264, 78, 64, 64], [7266, 48, 64, 64], [7582, 149, 64, 64], [7524, 147, 64, 64], [7461, 146, 64, 64], [7425, 148, 64, 64], [7580, 86, 64, 64], [7582, 41, 64, 64], [7519, 41, 64, 64], [7460, 40, 64, 64], [7427, 96, 64, 64], [7427, 41, 64, 64], [8060, 288, 64, 64], [8059, 226, 64, 64], [8145, 194, 64, 64], [8081, 194, 64, 64], [8058, 195, 64, 64], [8485, 234, 64, 64], [8422, 235, 64, 64], [8360, 235, 64, 64], [8296, 235, 64, 64], [8266, 237, 64, 64], [8371, 173, 64, 64], [8370, 117, 64, 64], [8372, 59, 64, 64], [8372, 51, 64, 64], [9147, 192, 64, 64], [9063, 287, 64, 64], [9064, 225, 64, 64], [9085, 193, 64, 64], [9063, 194, 64, 64], [9492, 234, 64, 64], [9428, 234, 64, 64], [9365, 235, 64, 64], [9302, 235, 64, 64], [9270, 237, 64, 64], [9374, 172, 64, 64], [9376, 109, 64, 64], [9377, 48, 64, 64], [9545, 1060, 64, 64], [9482, 1062, 64, 64], [9423, 1062, 64, 64], [9387, 1062, 64, 64], [9541, 999, 64, 64], [9542, 953, 64, 64], [9478, 953, 64, 64], [9388, 999, 64, 64], [9414, 953, 64, 64], [9389, 953, 64, 64], [9294, 1194, 64, 64], [9245, 1195, 64, 64], [9297, 1143, 64, 64], [9245, 1144, 64, 64], [5575, 1781, 64, 64], [5574, 1753, 64, 64], [5522, 1782, 64, 64], [5518, 1753, 64, 64], [5472, 1783, 64, 64], [5471, 1751, 64, 64], [5419, 1781, 64, 64], [5421, 1749, 64, 64], [500, 3207, 64, 64], [477, 3205, 64, 64], [1282, 3214, 64, 64], [1221, 3214, 64, 64], [1188, 3215, 64, 64], [1345, 3103, 64, 64], [1288, 3103, 64, 64], [1231, 3104, 64, 64], [1190, 3153, 64, 64], [1189, 3105, 64, 64], [2255, 3508, 64, 64], [2206, 3510, 64, 64], [2254, 3458, 64, 64], [2202, 3458, 64, 64], [2754, 2930, 64, 64], [2726, 2932, 64, 64], [3408, 2874, 64, 64], [3407, 2849, 64, 64], [3345, 2872, 64, 64], [3342, 2847, 64, 64], [3284, 2874, 64, 64], [3284, 2848, 64, 64], [3248, 2878, 64, 64], [3252, 2848, 64, 64], [3953, 3274, 64, 64], [3899, 3277, 64, 64], [3951, 3222, 64, 64], [3900, 3222, 64, 64], [4310, 2968, 64, 64], [4246, 2969, 64, 64], [4183, 2965, 64, 64], [4153, 2967, 64, 64], [4311, 2910, 64, 64], [4308, 2856, 64, 64], [4251, 2855, 64, 64], [4197, 2857, 64, 64], [5466, 3184, 64, 64], [5466, 3158, 64, 64], [5404, 3184, 64, 64], [5404, 3156, 64, 64], [5343, 3185, 64, 64], [5342, 3156, 64, 64], [5308, 3185, 64, 64], [5307, 3154, 64, 64], [6163, 2950, 64, 64], [6111, 2952, 64, 64], [6164, 2898, 64, 64], [6113, 2897, 64, 64], [7725, 3156, 64, 64], [7661, 3157, 64, 64], [7598, 3157, 64, 64], [7533, 3156, 64, 64], [7468, 3156, 64, 64], [7401, 3156, 64, 64], [7335, 3157, 64, 64], [7270, 3157, 64, 64], [7208, 3157, 64, 64], [7146, 3157, 64, 64], [7134, 3159, 64, 64], [6685, 3726, 64, 64], [6685, 3663, 64, 64], [6683, 3602, 64, 64], [6679, 3538, 64, 64], [6680, 3474, 64, 64], [6682, 3413, 64, 64], [6681, 3347, 64, 64], [6681, 3287, 64, 64], [6682, 3223, 64, 64], [6683, 3161, 64, 64], [6682, 3102, 64, 64], [6684, 3042, 64, 64], [6685, 2980, 64, 64], [6685, 2920, 64, 64], [6683, 2859, 64, 64], [6684, 2801, 64, 64], [6686, 2743, 64, 64], [6683, 2683, 64, 64], [6681, 2622, 64, 64], [6682, 2559, 64, 64], [6683, 2498, 64, 64], [6685, 2434, 64, 64], [6683, 2371, 64, 64], [6683, 2306, 64, 64], [6684, 2242, 64, 64], [6683, 2177, 64, 64], [6683, 2112, 64, 64], [6683, 2049, 64, 64], [6683, 1985, 64, 64], [6682, 1923, 64, 64], [6683, 1860, 64, 64], [6685, 1797, 64, 64], [6684, 1735, 64, 64], [6685, 1724, 64, 64], [7088, 1967, 64, 64], [7026, 1966, 64, 64], [6964, 1967, 64, 64], [6900, 1965, 64, 64], [6869, 1969, 64, 64], [6972, 1904, 64, 64], [6974, 1840, 64, 64], [6971, 1776, 64, 64], [6971, 1716, 64, 64], [7168, 1979, 64, 64], [7170, 1919, 64, 64], [7169, 1882, 64, 64], [7115, 1880, 64, 64], [7086, 1881, 64, 64], [7725, 1837, 64, 64], [7724, 1776, 64, 64], [7724, 1728, 64, 64], [7661, 1727, 64, 64], [7603, 1728, 64, 64], [7571, 1837, 64, 64], [7570, 1774, 64, 64], [7572, 1725, 64, 64], [7859, 2134, 64, 64], [7858, 2070, 64, 64], [7858, 2008, 64, 64], [7860, 1942, 64, 64], [7856, 1878, 64, 64], [7860, 1813, 64, 64], [7859, 1750, 64, 64], [7856, 1724, 64, 64], [8155, 1837, 64, 64], [8092, 1839, 64, 64], [8032, 1838, 64, 64], [7999, 1839, 64, 64], [8153, 1773, 64, 64], [8154, 1731, 64, 64], [8090, 1730, 64, 64], [8035, 1732, 64, 64], [8003, 1776, 64, 64], [8003, 1730, 64, 64], [8421, 1978, 64, 64], [8420, 1917, 64, 64], [8505, 1878, 64, 64], [8443, 1881, 64, 64], [8420, 1882, 64, 64], [8847, 1908, 64, 64], [8783, 1908, 64, 64], [8718, 1910, 64, 64], [8654, 1910, 64, 64], [8628, 1911, 64, 64], [8729, 1847, 64, 64], [8731, 1781, 64, 64], [8731, 1721, 64, 64], [9058, 2135, 64, 64], [9056, 2073, 64, 64], [9058, 2006, 64, 64], [9057, 1939, 64, 64], [9058, 1876, 64, 64], [9056, 1810, 64, 64], [9059, 1745, 64, 64], [9060, 1722, 64, 64], [9273, 1977, 64, 64], [9273, 1912, 64, 64], [9358, 1883, 64, 64], [9298, 1881, 64, 64], [9270, 1883, 64, 64], [9699, 1910, 64, 64], [9637, 1910, 64, 64], [9576, 1910, 64, 64], [9512, 1911, 64, 64], [9477, 1912, 64, 64], [9584, 1846, 64, 64], [9585, 1783, 64, 64], [9586, 1719, 64, 64], [8320, 2788, 64, 64], [8256, 2789, 64, 64], [8192, 2789, 64, 64], [8180, 2789, 64, 64], [8319, 2730, 64, 64], [8319, 2671, 64, 64], [8319, 2639, 64, 64], [8259, 2639, 64, 64], [8202, 2639, 64, 64], [8179, 2727, 64, 64], [8178, 2665, 64, 64], [8177, 2636, 64, 64], [9360, 3138, 64, 64], [9296, 3137, 64, 64], [9235, 3139, 64, 64], [9174, 3139, 64, 64], [9113, 3138, 64, 64], [9050, 3138, 64, 64], [8988, 3138, 64, 64], [8925, 3138, 64, 64], [8860, 3136, 64, 64], [8797, 3136, 64, 64], [8770, 3138, 64, 64], [8827, 4171, 64, 64], [8827, 4107, 64, 64], [8827, 4043, 64, 64], [8827, 3978, 64, 64], [8825, 3914, 64, 64], [8824, 3858, 64, 64], [9635, 4234, 64, 64], [9584, 4235, 64, 64], [9634, 4187, 64, 64], [9582, 4183, 64, 64], [9402, 5114, 64, 64], [9402, 5087, 64, 64], [9347, 5113, 64, 64], [9345, 5086, 64, 64], [9287, 5114, 64, 64], [9285, 5085, 64, 64], [9245, 5114, 64, 64], [9244, 5086, 64, 64], [9336, 5445, 64, 64], [9285, 5445, 64, 64], [9337, 5395, 64, 64], [9283, 5393, 64, 64], [8884, 4968, 64, 64], [8884, 4939, 64, 64], [8822, 4967, 64, 64], [8823, 4940, 64, 64], [8765, 4967, 64, 64], [8762, 4937, 64, 64], [8726, 4969, 64, 64], [8727, 4939, 64, 64], [7946, 5248, 64, 64], [7945, 5220, 64, 64], [7887, 5248, 64, 64], [7886, 5219, 64, 64], [7830, 5248, 64, 64], [7827, 5218, 64, 64], [7781, 5248, 64, 64], [7781, 5216, 64, 64], [6648, 4762, 64, 64], [6621, 4761, 64, 64], [5011, 4446, 64, 64], [4982, 4444, 64, 64], [4146, 4641, 64, 64], [4092, 4643, 64, 64], [4145, 4589, 64, 64], [4091, 4590, 64, 64], [4139, 4497, 64, 64], [4135, 4437, 64, 64], [4135, 4383, 64, 64], [4078, 4495, 64, 64], [4014, 4494, 64, 64], [3979, 4496, 64, 64], [4074, 4384, 64, 64], [4015, 4381, 64, 64], [3980, 4433, 64, 64], [3981, 4384, 64, 64], [3276, 4279, 64, 64], [3275, 4218, 64, 64], [3276, 4170, 64, 64], [3211, 4164, 64, 64], [3213, 4280, 64, 64], [3156, 4278, 64, 64], [3120, 4278, 64, 64], [3151, 4163, 64, 64], [3120, 4216, 64, 64], [3120, 4161, 64, 64], [1536, 4171, 64, 64], [1536, 4110, 64, 64], [1535, 4051, 64, 64], [1536, 3991, 64, 64], [1536, 3928, 64, 64], [1536, 3863, 64, 64], [1078, 4605, 64, 64], [1076, 4577, 64, 64], [1018, 4604, 64, 64], [1018, 4575, 64, 64], [957, 4606, 64, 64], [960, 4575, 64, 64], [918, 4602, 64, 64], [918, 4580, 64, 64], [394, 4164, 64, 64], [335, 4163, 64, 64], [274, 4161, 64, 64], [236, 4163, 64, 64], [394, 4140, 64, 64], [329, 4139, 64, 64], [268, 4139, 64, 64], [239, 4139, 64, 64], [4326, 5073, 64, 64], [4324, 5042, 64, 64], [4265, 5074, 64, 64], [4263, 5042, 64, 64], [4214, 5072, 64, 64], [4211, 5043, 64, 64], [4166, 5073, 64, 64], [4164, 5041, 64, 64], [4844, 5216, 64, 64], [4844, 5189, 64, 64], [4785, 5217, 64, 64], [4790, 5187, 64, 64], [4726, 5219, 64, 64], [4728, 5185, 64, 64], [4681, 5218, 64, 64], [4684, 5186, 64, 64], [4789, 4926, 64, 64], [4734, 4928, 64, 64], [4787, 4876, 64, 64], [4738, 4874, 64, 64], [4775, 5548, 64, 64], [4775, 5495, 64, 64], [4723, 5550, 64, 64], [4725, 5494, 64, 64], [1360, 5269, 64, 64], [1362, 5218, 64, 64], [1315, 5266, 64, 64], [1282, 5266, 64, 64], [1246, 5311, 64, 64], [1190, 5312, 64, 64], [1136, 5310, 64, 64], [1121, 5427, 64, 64], [1121, 5370, 64, 64], [1074, 5427, 64, 64], [1064, 5423, 64, 64], [1052, 5417, 64, 64], [1050, 5368, 64, 64], [1008, 5314, 64, 64], [997, 5307, 64, 64], [977, 5299, 64, 64], [976, 5248, 64, 64], [825, 5267, 64, 64], [826, 5213, 64, 64], [776, 5267, 64, 64], [768, 5261, 64, 64], [755, 5256, 64, 64], [753, 5209, 64, 64], [1299, 5206, 64, 64], [1238, 5204, 64, 64], [1178, 5203, 64, 64], [1124, 5204, 64, 64], [1065, 5206, 64, 64], [1008, 5203, 64, 64], [977, 5214, 64, 64], [410, 5313, 64, 64], [407, 5249, 64, 64], [411, 5225, 64, 64], [397, 5217, 64, 64], [378, 5209, 64, 64], [358, 5312, 64, 64], [287, 5427, 64, 64], [286, 5364, 64, 64], [300, 5313, 64, 64], [242, 5427, 64, 64], [229, 5420, 64, 64], [217, 5416, 64, 64], [215, 5364, 64, 64], [174, 5311, 64, 64], [165, 5308, 64, 64], [139, 5300, 64, 64], [141, 5236, 64, 64], [141, 5211, 64, 64], [315, 5208, 64, 64], [251, 5208, 64, 64], [211, 5211, 64, 64], [8050, 4060, 64, 64], [7992, 4060, 64, 64], [7929, 4060, 64, 64], [7866, 4061, 64, 64], [7828, 4063, 64, 64], [7934, 4001, 64, 64], [7935, 3936, 64, 64], [7935, 3875, 64, 64], [7622, 4111, 64, 64], [7623, 4049, 64, 64], [7707, 4018, 64, 64], [7663, 4019, 64, 64], [7623, 4017, 64, 64], [7193, 4060, 64, 64], [7131, 4059, 64, 64], [7070, 4057, 64, 64], [7008, 4060, 64, 64], [6977, 4060, 64, 64], [7080, 3998, 64, 64], [7081, 3935, 64, 64], [7080, 3873, 64, 64], [6855, 4019, 64, 64], [6790, 4018, 64, 64], [6770, 4114, 64, 64], [6770, 4060, 64, 64], [6768, 4013, 64, 64], [6345, 4060, 64, 64], [6284, 4062, 64, 64], [6222, 4061, 64, 64], [6166, 4061, 64, 64], [6124, 4066, 64, 64], [6226, 3995, 64, 64], [6226, 3933, 64, 64], [6228, 3868, 64, 64], [5916, 4113, 64, 64], [5918, 4052, 64, 64], [6001, 4018, 64, 64], [5941, 4019, 64, 64], [5918, 4020, 64, 64], [5501, 4059, 64, 64], [5439, 4061, 64, 64], [5376, 4059, 64, 64], [5312, 4058, 64, 64], [5285, 4062, 64, 64], [5388, 3999, 64, 64], [5385, 3941, 64, 64], [5384, 3874, 64, 64], [5075, 4112, 64, 64], [5074, 4051, 64, 64], [5158, 4018, 64, 64], [5095, 4020, 64, 64], [5073, 4018, 64, 64], [4549, 3998, 64, 64], [4393, 3996, 64, 64], [4547, 3938, 64, 64], [4547, 3886, 64, 64], [4488, 3885, 64, 64], [4427, 3885, 64, 64], [4395, 3938, 64, 64], [4395, 3885, 64, 64], [0, 0, 64, 64], [0, 1670, 64, 64], [6691, 1653, 64, 64], [1521, 3792, 64, 64], [0, 5137, 64, 64], [0, 0, 64, 64], [0, 1670, 64, 64], [6691, 1653, 64, 64], [1521, 3792, 64, 64], [0, 5137, 64, 64], [1215, 2421, 64, 64], [1214, 2360, 64, 64], [1211, 2300, 64, 64], [1211, 2291, 64, 64], [1158, 2420, 64, 64], [1156, 2358, 64, 64], [1149, 2291, 64, 64], [1095, 2420, 64, 64], [1030, 2418, 64, 64], [966, 2419, 64, 64], [903, 2419, 64, 64], [852, 2419, 64, 64], [1087, 2291, 64, 64], [1023, 2291, 64, 64], [960, 2291, 64, 64], [896, 2292, 64, 64], [854, 2355, 64, 64], [854, 2292, 64, 64], [675, 3017, 64, 64], [622, 3017, 64, 64], [676, 2965, 64, 64], [622, 2965, 64, 64], [1560, 3212, 64, 64], [1496, 3212, 64, 64], [1430, 3211, 64, 64], [1346, 3214, 64, 64], [1410, 3213, 64, 64], [1560, 3147, 64, 64], [1559, 3105, 64, 64], [1496, 3105, 64, 64], [1442, 3105, 64, 64], [1412, 3106, 64, 64], [918, 4163, 64, 64], [854, 4161, 64, 64], [792, 4160, 64, 64], [729, 4159, 64, 64], [666, 4158, 64, 64], [601, 4158, 64, 64], [537, 4156, 64, 64], [918, 4137, 64, 64], [854, 4137, 64, 64], [789, 4136, 64, 64], [726, 4137, 64, 64], [661, 4137, 64, 64], [599, 4139, 64, 64], [538, 4137, 64, 64], [5378, 4254, 64, 64], [5440, 4204, 64, 64], [5405, 4214, 64, 64], [5350, 4254, 64, 64], [5439, 4177, 64, 64], [5413, 4173, 64, 64], [5399, 4128, 64, 64], [5352, 4200, 64, 64], [5352, 4158, 64, 64], [5392, 4130, 64, 64], [6216, 4251, 64, 64], [6190, 4251, 64, 64], [6279, 4200, 64, 64], [6262, 4205, 64, 64], [6233, 4214, 64, 64], [6280, 4172, 64, 64], [6256, 4169, 64, 64], [6239, 4128, 64, 64], [6231, 4128, 64, 64], [6191, 4195, 64, 64], [6190, 4158, 64, 64], [7072, 4250, 64, 64], [7046, 4250, 64, 64], [7133, 4202, 64, 64], [7107, 4209, 64, 64], [7086, 4214, 64, 64], [7133, 4173, 64, 64], [7108, 4169, 64, 64], [7092, 4127, 64, 64], [7084, 4128, 64, 64], [7047, 4191, 64, 64], [7047, 4156, 64, 64], [7926, 4252, 64, 64], [7900, 4253, 64, 64], [7987, 4202, 64, 64], [7965, 4209, 64, 64], [7942, 4216, 64, 64], [7989, 4174, 64, 64], [7970, 4170, 64, 64], [7949, 4126, 64, 64], [7901, 4196, 64, 64], [7900, 4159, 64, 64], [7941, 4130, 64, 64], [2847, 379, 64, 64], [2825, 380, 64, 64], [2845, 317, 64, 64], [2829, 316, 64, 64], [2845, 255, 64, 64], [2830, 257, 64, 64], [2845, 202, 64, 64], [2829, 198, 64, 64], [2770, 169, 64, 64], [2708, 170, 64, 64], [2646, 171, 64, 64], [2582, 171, 64, 64], [2518, 171, 64, 64], [2454, 171, 64, 64], [2391, 172, 64, 64], [2332, 379, 64, 64], [2315, 379, 64, 64], [2334, 316, 64, 64], [2315, 317, 64, 64], [2332, 254, 64, 64], [2314, 254, 64, 64], [2335, 192, 64, 64], [2311, 192, 64, 64], [2846, 142, 64, 64], [2784, 140, 64, 64], [2846, 79, 64, 64], [2847, 41, 64, 64], [2783, 80, 64, 64], [2790, 39, 64, 64], [2727, 41, 64, 64], [2665, 43, 64, 64], [2605, 43, 64, 64], [2543, 44, 64, 64], [2480, 45, 64, 64], [2419, 45, 64, 64], [2357, 44, 64, 64], [2313, 129, 64, 64], [2313, 70, 64, 64], [2314, 40, 64, 64], [2517, 2385, 64, 64], [2452, 2385, 64, 64], [2390, 2386, 64, 64], [2328, 2386, 64, 64], [2264, 2386, 64, 64], [2200, 2386, 64, 64], [2137, 2387, 64, 64], [2071, 2385, 64, 64], [2016, 2389, 64, 64], [2517, 2341, 64, 64], [2518, 2316, 64, 64], [2456, 2316, 64, 64], [2393, 2316, 64, 64], [2328, 2317, 64, 64], [2264, 2316, 64, 64], [2207, 2318, 64, 64], [2144, 2317, 64, 64], [2081, 2316, 64, 64], [2015, 2342, 64, 64], [2016, 2315, 64, 64], [869, 3709, 64, 64], [819, 3710, 64, 64], [869, 3658, 64, 64], [820, 3658, 64, 64], [0, 0, 64, 64], [0, 1670, 64, 64], [6691, 1653, 64, 64], [1521, 3792, 64, 64], [0, 5137, 64, 64], [3898, 2400, 64, 64], [3835, 2400, 64, 64], [3771, 2400, 64, 64], [3708, 2401, 64, 64], [3646, 2401, 64, 64], [3587, 2401, 64, 64], [3530, 2401, 64, 64], [3897, 2340, 64, 64], [3897, 2295, 64, 64], [3834, 2296, 64, 64], [3773, 2295, 64, 64], [3710, 2296, 64, 64], [3656, 2295, 64, 64], [3593, 2294, 64, 64], [3527, 2339, 64, 64], [3531, 2293, 64, 64], [4152, 2903, 64, 64], [4155, 2858, 64, 64], [3942, 1306, 64, 64], [3942, 1279, 64, 64], [3879, 1306, 64, 64], [3881, 1278, 64, 64], [3819, 1305, 64, 64], [3819, 1277, 64, 64], [3756, 1306, 64, 64], [3756, 1277, 64, 64], [3694, 1306, 64, 64], [3695, 1277, 64, 64], [3631, 1306, 64, 64], [3632, 1278, 64, 64], [3565, 1306, 64, 64], [3567, 1279, 64, 64], [4432, 1165, 64, 64], [4408, 1163, 64, 64], [5123, 1003, 64, 64], [5065, 1002, 64, 64], [5042, 1002, 64, 64], [6020, 1780, 64, 64], [6020, 1756, 64, 64], [5959, 1780, 64, 64], [5959, 1752, 64, 64], [5897, 1779, 64, 64], [5899, 1752, 64, 64], [5836, 1779, 64, 64], [5836, 1751, 64, 64], [5776, 1780, 64, 64], [5776, 1754, 64, 64], [5717, 1780, 64, 64], [5716, 1752, 64, 64], [5658, 1781, 64, 64], [5658, 1755, 64, 64], [5640, 1781, 64, 64], [5640, 1754, 64, 64], [5832, 2095, 64, 64], [5782, 2093, 64, 64], [5832, 2044, 64, 64], [5777, 2043, 64, 64], [4847, 2577, 64, 64], [4795, 2577, 64, 64], [4846, 2526, 64, 64], [4794, 2526, 64, 64], [8390, 923, 64, 64], [8363, 922, 64, 64], [7585, 1084, 64, 64], [7582, 1058, 64, 64], [7525, 1084, 64, 64], [7524, 1056, 64, 64], [7478, 1085, 64, 64], [7476, 1055, 64, 64], [7421, 1086, 64, 64], [7421, 1052, 64, 64], [7362, 1085, 64, 64], [7361, 1053, 64, 64], [7307, 1087, 64, 64], [7307, 1054, 64, 64], [7258, 1086, 64, 64], [7255, 1058, 64, 64], [7203, 1083, 64, 64], [7203, 1055, 64, 64], [7161, 1085, 64, 64], [7158, 1057, 64, 64], [7100, 1083, 64, 64], [7099, 1058, 64, 64], [7038, 1082, 64, 64], [7038, 1058, 64, 64], [6982, 1083, 64, 64], [6984, 1057, 64, 64], [0, 0, 64, 64], [0, 1670, 64, 64], [6691, 1653, 64, 64], [1521, 3792, 64, 64], [0, 5137, 64, 64], [0, 0, 64, 64], [0, 1670, 64, 64], [6691, 1653, 64, 64], [1521, 3792, 64, 64], [0, 5137, 64, 64], [0, 0, 64, 64], [0, 1670, 64, 64], [6691, 1653, 64, 64], [1521, 3792, 64, 64], [0, 5137, 64, 64], [8346, 424, 64, 64], [8407, 376, 64, 64], [8375, 386, 64, 64], [8407, 347, 64, 64], [8388, 343, 64, 64], [8320, 423, 64, 64], [8319, 363, 64, 64], [8368, 303, 64, 64], [8359, 303, 64, 64], [8318, 330, 64, 64], [9369, 425, 64, 64], [9340, 425, 64, 64], [9431, 376, 64, 64], [9414, 382, 64, 64], [9387, 391, 64, 64], [9431, 349, 64, 64], [9412, 344, 64, 64], [9392, 305, 64, 64], [9339, 365, 64, 64], [9341, 333, 64, 64], [9384, 301, 64, 64], [7673, 1896, 64, 64], [7642, 1834, 64, 64], [7646, 1901, 64, 64], [4500, 4054, 64, 64], [4476, 4055, 64, 64], [4459, 3997, 64, 64], [76, 5215, 64, 64], [39, 5217, 64, 64], ] $mugs = [ [85, 87, 39, 43, "sprites/square-orange.png"], [958, 1967, 39, 43, "sprites/square-orange.png"], [2537, 1734, 39, 43, "sprites/square-orange.png"], [3755, 2464, 39, 43, "sprites/square-orange.png"], [1548, 3273, 39, 43, "sprites/square-orange.png"], [2050, 220, 39, 43, "sprites/square-orange.png"], [854, 297, 39, 43, "sprites/square-orange.png"], [343, 526, 39, 43, "sprites/square-orange.png"], [3454, 772, 39, 43, "sprites/square-orange.png"], [5041, 298, 39, 43, "sprites/square-orange.png"], [6089, 300, 39, 43, "sprites/square-orange.png"], [6518, 295, 39, 43, "sprites/square-orange.png"], [7661, 47, 39, 43, "sprites/square-orange.png"], [9392, 1125, 39, 43, "sprites/square-orange.png"], [7298, 1152, 39, 43, "sprites/square-orange.png"], [5816, 1843, 39, 43, "sprites/square-orange.png"], [876, 3772, 39, 43, "sprites/square-orange.png"], [1029, 4667, 39, 43, "sprites/square-orange.png"], [823, 5324, 39, 43, "sprites/square-orange.png"], [3251, 5220, 39, 43, "sprites/square-orange.png"], [4747, 5282, 39, 43, "sprites/square-orange.png"], [9325, 5178, 39, 43, "sprites/square-orange.png"], [9635, 4298, 39, 43, "sprites/square-orange.png"], [7837, 4127, 39, 43, "sprites/square-orange.png"], [8651, 1971, 39, 43, "sprites/square-orange.png"], [6892, 2031, 39, 43, "sprites/square-orange.png"], [4626, 3882, 39, 43, "sprites/square-orange.png"], [4024, 4554, 39, 43, "sprites/square-orange.png"], [3925, 3337, 39, 43, "sprites/square-orange.png"], [5064, 1064, 39, 43, "sprites/square-orange.png"] ]Platformer - Gorillas Basic - credits.txt
# ./samples/99_genre_platformer/gorillas_basic/CREDITS.txt code: Amir Rajan, https://twitter.com/amirrajan graphics: Nick Culbertson, https://twitter.com/MobyPixelPlatformer - Gorillas Basic - main.rb
# ./samples/99_genre_platformer/gorillas_basic/app/main.rb class YouSoBasicGorillas attr_accessor :outputs, :grid, :state, :inputs def tick defaults render calc process_inputs end def defaults outputs.background_color = [33, 32, 87] state.building_spacing = 1 state.building_room_spacing = 15 state.building_room_width = 10 state.building_room_height = 15 state.building_heights = [4, 4, 6, 8, 15, 20, 18] state.building_room_sizes = [5, 4, 6, 7] state.gravity = 0.25 state.first_strike ||= :player_1 state.buildings ||= [] state.holes ||= [] state.player_1_score ||= 0 state.player_2_score ||= 0 state.wind ||= 0 end def render render_stage render_value_insertion render_gorillas render_holes render_banana render_game_over render_score render_wind end def render_score outputs.primitives << [0, 0, 1280, 31, fancy_white].solid outputs.primitives << [1, 1, 1279, 29].solid outputs.labels << [ 10, 25, "Score: #{state.player_1_score}", 0, 0, fancy_white] outputs.labels << [1270, 25, "Score: #{state.player_2_score}", 0, 2, fancy_white] end def render_wind outputs.primitives << [640, 12, state.wind * 500 + state.wind * 10 * rand, 4, 35, 136, 162].solid outputs.lines << [640, 30, 640, 0, fancy_white] end def render_game_over return unless state.over outputs.primitives << [grid.rect, 0, 0, 0, 200].solid outputs.primitives << [640, 370, "Game Over!!", 5, 1, fancy_white].label if state.winner == :player_1 outputs.primitives << [640, 340, "Player 1 Wins!!", 5, 1, fancy_white].label else outputs.primitives << [640, 340, "Player 2 Wins!!", 5, 1, fancy_white].label end end def render_stage return unless state.stage_generated return if state.stage_rendered outputs.static_solids << [grid.rect, 33, 32, 87] outputs.static_solids << state.buildings.map(&:solids) state.stage_rendered = true end def render_gorilla gorilla, id return unless gorilla if state.banana && state.banana.owner == gorilla animation_index = state.banana.created_at.frame_index(3, 5, false) end if !animation_index outputs.sprites << [gorilla.solid, "sprites/#{id}-idle.png"] else outputs.sprites << [gorilla.solid, "sprites/#{id}-#{animation_index}.png"] end end def render_gorillas render_gorilla state.player_1, :left render_gorilla state.player_2, :right end def render_value_insertion return if state.banana return if state.over if state.current_turn == :player_1_angle outputs.labels << [ 10, 710, "Angle: #{state.player_1_angle}_", fancy_white] elsif state.current_turn == :player_1_velocity outputs.labels << [ 10, 710, "Angle: #{state.player_1_angle}", fancy_white] outputs.labels << [ 10, 690, "Velocity: #{state.player_1_velocity}_", fancy_white] elsif state.current_turn == :player_2_angle outputs.labels << [1120, 710, "Angle: #{state.player_2_angle}_", fancy_white] elsif state.current_turn == :player_2_velocity outputs.labels << [1120, 710, "Angle: #{state.player_2_angle}", fancy_white] outputs.labels << [1120, 690, "Velocity: #{state.player_2_velocity}_", fancy_white] end end def render_banana return unless state.banana rotation = state.tick_count.%(360) * 20 rotation *= -1 if state.banana.dx > 0 outputs.sprites << [state.banana.x, state.banana.y, 15, 15, 'sprites/banana.png', rotation] end def render_holes outputs.sprites << state.holes.map do |s| animation_index = s.created_at.frame_index(7, 3, false) if animation_index [s.sprite, [s.sprite.rect, "sprites/explosion#{animation_index}.png" ]] else s.sprite end end end def calc calc_generate_stage calc_current_turn calc_banana end def calc_current_turn return if state.current_turn state.current_turn = :player_1_angle state.current_turn = :player_2_angle if state.first_strike == :player_2 end def calc_generate_stage return if state.stage_generated state.buildings << building_prefab(state.building_spacing + -20, *random_building_size) 8.numbers.inject(state.buildings) do |buildings, i| buildings << building_prefab(state.building_spacing + state.buildings.last.right, *random_building_size) end building_two = state.buildings[1] state.player_1 = new_player(building_two.x + building_two.w.fdiv(2), building_two.h) building_nine = state.buildings[-3] state.player_2 = new_player(building_nine.x + building_nine.w.fdiv(2), building_nine.h) state.stage_generated = true state.wind = 1.randomize(:ratio, :sign) end def new_player x, y state.new_entity(:gorilla) do |p| p.x = x - 25 p.y = y p.solid = [p.x, p.y, 50, 50] end end def calc_banana return unless state.banana state.banana.x += state.banana.dx state.banana.dx += state.wind.fdiv(50) state.banana.y += state.banana.dy state.banana.dy -= state.gravity banana_collision = [state.banana.x, state.banana.y, 10, 10] if state.player_1 && banana_collision.intersect_rect?(state.player_1.solid) state.over = true if state.banana.owner == state.player_2 state.winner = :player_2 else state.winner = :player_1 end state.player_2_score += 1 elsif state.player_2 && banana_collision.intersect_rect?(state.player_2.solid) state.over = true if state.banana.owner == state.player_2 state.winner = :player_1 else state.winner = :player_2 end state.player_1_score += 1 end if state.over place_hole return end return if state.holes.any? do |h| h.sprite.scale_rect(0.8, 0.5, 0.5).intersect_rect? [state.banana.x, state.banana.y, 10, 10] end return unless state.banana.y < 0 || state.buildings.any? do |b| b.rect.intersect_rect? [state.banana.x, state.banana.y, 1, 1] end place_hole end def place_hole return unless state.banana state.holes << state.new_entity(:banana) do |b| b.sprite = [state.banana.x - 20, state.banana.y - 20, 40, 40, 'sprites/hole.png'] end state.banana = nil end def process_inputs_main return if state.banana return if state.over if inputs.keyboard.key_down.enter input_execute_turn elsif inputs.keyboard.key_down.backspace state.as_hash[state.current_turn] ||= "" state.as_hash[state.current_turn] = state.as_hash[state.current_turn][0..-2] elsif inputs.keyboard.key_down.char state.as_hash[state.current_turn] ||= "" state.as_hash[state.current_turn] += inputs.keyboard.key_down.char end end def process_inputs_game_over return unless state.over return unless inputs.keyboard.key_down.truthy_keys.any? state.over = false outputs.static_solids.clear state.buildings.clear state.holes.clear state.stage_generated = false state.stage_rendered = false if state.first_strike == :player_1 state.first_strike = :player_2 else state.first_strike = :player_1 end end def process_inputs process_inputs_main process_inputs_game_over end def input_execute_turn return if state.banana if state.current_turn == :player_1_angle && parse_or_clear!(:player_1_angle) state.current_turn = :player_1_velocity elsif state.current_turn == :player_1_velocity && parse_or_clear!(:player_1_velocity) state.current_turn = :player_2_angle state.banana = new_banana(state.player_1, state.player_1.x + 25, state.player_1.y + 60, state.player_1_angle, state.player_1_velocity) elsif state.current_turn == :player_2_angle && parse_or_clear!(:player_2_angle) state.current_turn = :player_2_velocity elsif state.current_turn == :player_2_velocity && parse_or_clear!(:player_2_velocity) state.current_turn = :player_1_angle state.banana = new_banana(state.player_2, state.player_2.x + 25, state.player_2.y + 60, 180 - state.player_2_angle, state.player_2_velocity) end if state.banana state.player_1_angle = nil state.player_1_velocity = nil state.player_2_angle = nil state.player_2_velocity = nil end end def random_building_size [state.building_heights.sample, state.building_room_sizes.sample] end def int? v v.to_i.to_s == v.to_s end def random_building_color [[ 99, 0, 107], [ 35, 64, 124], [ 35, 136, 162], ].sample end def random_window_color [[ 88, 62, 104], [253, 224, 187]].sample end def windows_for_building starting_x, floors, rooms floors.-(1).combinations(rooms - 1).map do |floor, room| [starting_x + state.building_room_width.*(room) + state.building_room_spacing.*(room + 1), state.building_room_height.*(floor) + state.building_room_spacing.*(floor + 1), state.building_room_width, state.building_room_height, random_window_color] end end def building_prefab starting_x, floors, rooms state.new_entity(:building) do |b| b.x = starting_x b.y = 0 b.w = state.building_room_width.*(rooms) + state.building_room_spacing.*(rooms + 1) b.h = state.building_room_height.*(floors) + state.building_room_spacing.*(floors + 1) b.right = b.x + b.w b.rect = [b.x, b.y, b.w, b.h] b.solids = [[b.x - 1, b.y, b.w + 2, b.h + 1, fancy_white], [b.x, b.y, b.w, b.h, random_building_color], windows_for_building(b.x, floors, rooms)] end end def parse_or_clear! game_prop if int? state.as_hash[game_prop] state.as_hash[game_prop] = state.as_hash[game_prop].to_i return true end state.as_hash[game_prop] = nil return false end def new_banana owner, x, y, angle, velocity state.new_entity(:banana) do |b| b.owner = owner b.x = x b.y = y b.angle = angle % 360 b.velocity = velocity / 5 b.dx = b.angle.vector_x(b.velocity) b.dy = b.angle.vector_y(b.velocity) end end def fancy_white [253, 252, 253] end end $you_so_basic_gorillas = YouSoBasicGorillas.new def tick args $you_so_basic_gorillas.outputs = args.outputs $you_so_basic_gorillas.grid = args.grid $you_so_basic_gorillas.state = args.state $you_so_basic_gorillas.inputs = args.inputs $you_so_basic_gorillas.tick endPlatformer - Gorillas Basic - tests.rb
# ./samples/99_genre_platformer/gorillas_basic/app/tests.rb $gtk.reset 100 $gtk.supress_framerate_warning = true $gtk.require 'app/tests/building_generation_tests.rb' $gtk.tests.startPlatformer - Gorillas Basic - Tests - building_generation_tests.rb
# ./samples/99_genre_platformer/gorillas_basic/app/tests/building_generation_tests.rb def test_solids args, assert game = YouSoBasicGorillas.new game.outputs = args.outputs game.grid = args.grid game.state = args.state game.inputs = args.inputs game.tick assert.true! args.state.stage_generated, "stage wasn't generated but it should have been" game.tick assert.true! args.outputs.static_solids.length > 0, "stage wasn't rendered" number_of_building_components = (args.state.buildings.map { |b| 2 + b.solids[2].length }.inject do |sum, v| (sum || 0) + v end) the_only_background = 1 static_solids = args.outputs.static_solids.length assert.true! static_solids == the_only_background.+(number_of_building_components), "not all parts of the buildings and background were rendered" endPlatformer - The Little Probe - main.rb
# ./samples/99_genre_platformer/the_little_probe/app/main.rb class FallingCircle attr_gtk def tick fiddle defaults render input calc end def fiddle state.gravity = -0.02 circle.radius = 15 circle.elasticity = 0.4 camera.follow_speed = 0.4 * 0.4 end def render render_stage_editor render_debug render_game end def defaults if state.tick_count == 0 outputs.sounds << "sounds/bg.ogg" end state.storyline ||= [ { text: "<- -> to aim, hold space to charge", distance_gate: 0 }, { text: "the little probe - by @amirrajan, made with DragonRuby Game Toolkit", distance_gate: 0 }, { text: "mission control, this is sasha. landing on europa successful.", distance_gate: 0 }, { text: "operation \"find earth 2.0\", initiated at 8-29-2036 14:00.", distance_gate: 0 }, { text: "jupiter's sure is beautiful...", distance_gate: 4000 }, { text: "hmm, it seems there's some kind of anomoly in the sky", distance_gate: 7000 }, { text: "dancing lights, i'll call them whisps.", distance_gate: 8000 }, { text: "#todo... look i ran out of time -_-", distance_gate: 9000 }, { text: "there's never enough time", distance_gate: 9000 }, { text: "the game jam was fun though ^_^", distance_gate: 10000 }, ] load_level force: args.state.tick_count == 0 state.line_mode ||= :terrain state.sound_index ||= 1 circle.potential_lift ||= 0 circle.angle ||= 90 circle.check_point_at ||= -1000 circle.game_over_at ||= -1000 circle.x ||= -485 circle.y ||= 12226 circle.check_point_x ||= circle.x circle.check_point_y ||= circle.y circle.dy ||= 0 circle.dx ||= 0 circle.previous_dy ||= 0 circle.previous_dx ||= 0 circle.angle ||= 0 circle.after_images ||= [] circle.terrains_to_monitor ||= {} circle.impact_history ||= [] camera.x ||= 0 camera.y ||= 0 camera.target_x ||= 0 camera.target_y ||= 0 state.snaps ||= { } state.snap_number = 10 args.state.storyline_x ||= -1000 args.state.storyline_y ||= -1000 end def render_game outputs.background_color = [0, 0, 0] outputs.sprites << [-circle.x + 1100, -circle.y - 100, 2416 * 4, 3574 * 4, 'sprites/jupiter.png'] outputs.sprites << [-circle.x, -circle.y, 2416 * 4, 3574 * 4, 'sprites/level.png'] outputs.sprites << state.whisp_queue render_aiming_retical render_circle render_notification end def render_notification toast_length = 500 if circle.game_over_at.elapsed_time < toast_length label_text = "..." elsif circle.check_point_at.elapsed_time > toast_length args.state.current_storyline = nil return end if circle.check_point_at && circle.check_point_at.elapsed_time == 1 && !args.state.current_storyline if args.state.storyline.length > 0 && args.state.distance_traveled > args.state.storyline[0][:distance_gate] args.state.current_storyline = args.state.storyline.shift[:text] args.state.distance_traveled ||= 0 args.state.storyline_x = circle.x args.state.storyline_y = circle.y end return unless args.state.current_storyline end label_text = args.state.current_storyline return unless label_text x = circle.x + camera.x y = circle.y + camera.y - 40 w = 900 h = 30 outputs.primitives << [x - w.idiv(2), y - h, w, h, 255, 255, 255, 255].solid outputs.primitives << [x - w.idiv(2), y - h, w, h, 0, 0, 0, 255].border outputs.labels << [x, y - 4, label_text, 1, 1, 0, 0, 0, 255] end def render_aiming_retical outputs.sprites << [state.camera.x + circle.x + circle.angle.vector_x(circle.potential_lift * 10) - 5, state.camera.y + circle.y + circle.angle.vector_y(circle.potential_lift * 10) - 5, 10, 10, 'sprites/circle-orange.png'] outputs.sprites << [state.camera.x + circle.x + circle.angle.vector_x(circle.radius * 3) - 5, state.camera.y + circle.y + circle.angle.vector_y(circle.radius * 3) - 5, 10, 10, 'sprites/circle-orange.png', 0, 128] if rand > 0.9 outputs.sprites << [state.camera.x + circle.x + circle.angle.vector_x(circle.radius * 3) - 5, state.camera.y + circle.y + circle.angle.vector_y(circle.radius * 3) - 5, 10, 10, 'sprites/circle-white.png', 0, 128] end end def render_circle outputs.sprites << circle.after_images.map do |ai| ai.merge(x: ai.x + state.camera.x - circle.radius, y: ai.y + state.camera.y - circle.radius, w: circle.radius * 2, h: circle.radius * 2, path: 'sprites/circle-white.png') end outputs.sprites << [(circle.x - circle.radius) + state.camera.x, (circle.y - circle.radius) + state.camera.y, circle.radius * 2, circle.radius * 2, 'sprites/probe.png'] end def render_debug return unless state.debug_mode outputs.labels << [10, 30, state.line_mode, 0, 0, 0, 0, 0] outputs.labels << [12, 32, state.line_mode, 0, 0, 255, 255, 255] args.outputs.lines << trajectory(circle).line.to_hash.tap do |h| h[:x] += state.camera.x h[:y] += state.camera.y h[:x2] += state.camera.x h[:y2] += state.camera.y end outputs.primitives << state.terrain.find_all do |t| circle.x.between?(t.x - 640, t.x2 + 640) || circle.y.between?(t.y - 360, t.y2 + 360) end.map do |t| [ t.line.associate(r: 0, g: 255, b: 0) do |h| h.x += state.camera.x h.y += state.camera.y h.x2 += state.camera.x h.y2 += state.camera.y if circle.rect.intersect_rect? t[:rect] h[:r] = 255 h[:g] = 0 end h end, t[:rect].border.associate(r: 255, g: 0, b: 0) do |h| h.x += state.camera.x h.y += state.camera.y h.b = 255 if line_near_rect? circle.rect, t h end ] end outputs.primitives << state.lava.find_all do |t| circle.x.between?(t.x - 640, t.x2 + 640) || circle.y.between?(t.y - 360, t.y2 + 360) end.map do |t| [ t.line.associate(r: 0, g: 0, b: 255) do |h| h.x += state.camera.x h.y += state.camera.y h.x2 += state.camera.x h.y2 += state.camera.y if circle.rect.intersect_rect? t[:rect] h[:r] = 255 h[:b] = 0 end h end, t[:rect].border.associate(r: 255, g: 0, b: 0) do |h| h.x += state.camera.x h.y += state.camera.y h.b = 255 if line_near_rect? circle.rect, t h end ] end if state.god_mode border = circle.rect.merge(x: circle.rect.x + state.camera.x, y: circle.rect.y + state.camera.y, g: 255) else border = circle.rect.merge(x: circle.rect.x + state.camera.x, y: circle.rect.y + state.camera.y, b: 255) end outputs.borders << border overlapping ||= {} circle.impact_history.each do |h| label_mod = 300 x = (h[:body][:x].-(150).idiv(label_mod)) * label_mod + camera.x y = (h[:body][:y].+(150).idiv(label_mod)) * label_mod + camera.y 10.times do if overlapping[x] && overlapping[x][y] y -= 52 else break end end overlapping[x] ||= {} overlapping[x][y] ||= true outputs.primitives << [x, y - 25, 300, 50, 0, 0, 0, 128].solid outputs.labels << [x + 10, y + 24, "dy: %.2f" % h[:body][:new_dy], -2, 0, 255, 255, 255] outputs.labels << [x + 10, y + 9, "dx: %.2f" % h[:body][:new_dx], -2, 0, 255, 255, 255] outputs.labels << [x + 10, y - 5, " ?: #{h[:body][:new_reason]}", -2, 0, 255, 255, 255] outputs.labels << [x + 100, y + 24, "angle: %.2f" % h[:impact][:angle], -2, 0, 255, 255, 255] outputs.labels << [x + 100, y + 9, "m(l): %.2f" % h[:terrain][:slope], -2, 0, 255, 255, 255] outputs.labels << [x + 100, y - 5, "m(c): %.2f" % h[:body][:slope], -2, 0, 255, 255, 255] outputs.labels << [x + 200, y + 24, "ray: #{h[:impact][:ray]}", -2, 0, 255, 255, 255] outputs.labels << [x + 200, y + 9, "nxt: #{h[:impact][:ray_next]}", -2, 0, 255, 255, 255] outputs.labels << [x + 200, y - 5, "typ: #{h[:impact][:type]}", -2, 0, 255, 255, 255] end if circle.floor outputs.labels << [circle.x + camera.x + 30, circle.y + camera.y + 100, "point: #{circle.floor_point.slice(:x, :y).values}", -2, 0] outputs.labels << [circle.x + camera.x + 31, circle.y + camera.y + 101, "point: #{circle.floor_point.slice(:x, :y).values}", -2, 0, 255, 255, 255] outputs.labels << [circle.x + camera.x + 30, circle.y + camera.y + 85, "circle: #{circle.as_hash.slice(:x, :y).values}", -2, 0] outputs.labels << [circle.x + camera.x + 31, circle.y + camera.y + 86, "circle: #{circle.as_hash.slice(:x, :y).values}", -2, 0, 255, 255, 255] outputs.labels << [circle.x + camera.x + 30, circle.y + camera.y + 70, "rel: #{circle.floor_relative_x} #{circle.floor_relative_y}", -2, 0] outputs.labels << [circle.x + camera.x + 31, circle.y + camera.y + 71, "rel: #{circle.floor_relative_x} #{circle.floor_relative_y}", -2, 0, 255, 255, 255] end end def render_stage_editor return unless state.god_mode return unless state.point_one args.lines << [state.point_one, inputs.mouse.point, 0, 255, 255] end def trajectory body [body.x + body.dx, body.y + body.dy, body.x + body.dx * 1000, body.y + body.dy * 1000, 0, 255, 255] end def lengthen_line line, num line = normalize_line(line) slope = geometry.line_slope(line, replace_infinity: 10).abs if slope < 2 [line.x - num, line.y, line.x2 + num, line.y2].line.to_hash else [line.x, line.y, line.x2, line.y2].line.to_hash end end def normalize_line line if line.x > line.x2 x = line.x2 y = line.y2 x2 = line.x y2 = line.y else x = line.x y = line.y x2 = line.x2 y2 = line.y2 end [x, y, x2, y2] end def rect_for_line line if line.x > line.x2 x = line.x2 y = line.y2 x2 = line.x y2 = line.y else x = line.x y = line.y x2 = line.x2 y2 = line.y2 end w = x2 - x h = y2 - y if h < 0 y += h h = h.abs end if w < circle.radius x -= circle.radius w = circle.radius * 2 end if h < circle.radius y -= circle.radius h = circle.radius * 2 end { x: x, y: y, w: w, h: h } end def snap_to_grid x, y, snaps snap_number = 10 x = x.to_i y = y.to_i x_floor = x.idiv(snap_number) * snap_number x_mod = x % snap_number x_ceil = (x.idiv(snap_number) + 1) * snap_number y_floor = y.idiv(snap_number) * snap_number y_mod = y % snap_number y_ceil = (y.idiv(snap_number) + 1) * snap_number if snaps[x_floor] x_result = x_floor elsif snaps[x_ceil] x_result = x_ceil elsif x_mod < snap_number.idiv(2) x_result = x_floor else x_result = x_ceil end snaps[x_result] ||= {} if snaps[x_result][y_floor] y_result = y_floor elsif snaps[x_result][y_ceil] y_result = y_ceil elsif y_mod < snap_number.idiv(2) y_result = y_floor else y_result = y_ceil end snaps[x_result][y_result] = true return [x_result, y_result] end def snap_line line x, y, x2, y2 = line end def string_to_line s x, y, x2, y2 = s.split(',').map(&:to_f) if x > x2 x2, x = x, x2 y2, y = y, y2 end x, y = snap_to_grid x, y, state.snaps x2, y2 = snap_to_grid x2, y2, state.snaps [x, y, x2, y2].line.to_hash end def load_lines file data = gtk.read_file(file) || "" data.each_line .reject { |l| l.strip.length == 0 } .map { |l| string_to_line l } .map { |h| h.merge(rect: rect_for_line(h)) } end def load_terrain load_lines 'data/level.txt' end def load_lava load_lines 'data/level_lava.txt' end def load_level force: false if force state.snaps = {} state.terrain = load_terrain state.lava = load_lava else state.terrain ||= load_terrain state.lava ||= load_lava end end def save_lines lines, file s = lines.map do |l| "#{l.x1},#{l.y1},#{l.x2},#{l.y2}" end.join("\n") gtk.write_file(file, s) end def save_level save_lines(state.terrain, 'level.txt') save_lines(state.lava, 'level_lava.txt') load_level force: true end def line_near_rect? rect, terrain geometry.intersect_rect?(rect, terrain[:rect]) end def point_within_line? point, line return false if !point return false if !line return true end def calc_impacts x, dx, y, dy, radius results = { } results[:x] = x results[:y] = y results[:dx] = x results[:dy] = y results[:point] = { x: x, y: y } results[:rect] = { x: x - radius, y: y - radius, w: radius * 2, h: radius * 2 } results[:trajectory] = trajectory(results) results[:impacts] = terrain.find_all { |t| line_near_rect? results[:rect], t }.map do |t| { terrain: t, point: geometry.line_intersect(results[:trajectory], t), type: :terrain } end.reject { |t| !point_within_line? t[:point], t[:terrain] } results[:impacts] += lava.find_all { |t| line_near_rect? results[:rect], t }.map do |t| { terrain: t, point: geometry.line_intersect(results[:trajectory], t), type: :lava } end.reject { |t| !point_within_line? t[:point], t[:terrain] } results end def calc_potential_impacts impact_results = calc_impacts circle.x, circle.dx, circle.y, circle.dy, circle.radius circle.rect = impact_results[:rect] circle.trajectory = impact_results[:trajectory] circle.impacts = impact_results[:impacts] end def calc_terrains_to_monitor circle.impact = nil circle.impacts.each do |i| circle.terrains_to_monitor[i[:terrain]] ||= { ray_start: geometry.ray_test(circle, i[:terrain]), } circle.terrains_to_monitor[i[:terrain]][:ray_current] = geometry.ray_test(circle, i[:terrain]) if circle.terrains_to_monitor[i[:terrain]][:ray_start] != circle.terrains_to_monitor[i[:terrain]][:ray_current] if circle.x.between?(i[:terrain].x, i[:terrain].x2) || circle.y.between?(i[:terrain].y, i[:terrain].y2) circle.impact = i circle.ray_current = circle.terrains_to_monitor[i[:terrain]][:ray_current] end end end end def impact_result body, impact infinity_alias = 1000 r = { body: {}, terrain: {}, impact: {} } r[:body][:line] = body.trajectory.dup r[:body][:slope] = geometry.line_slope(body.trajectory, replace_infinity: infinity_alias) r[:body][:slope_sign] = r[:body][:slope].sign r[:body][:x] = body.x r[:body][:y] = body.y r[:body][:dy] = body.dy r[:body][:dx] = body.dx r[:terrain][:line] = impact[:terrain].dup r[:terrain][:slope] = geometry.line_slope(impact[:terrain], replace_infinity: infinity_alias) r[:terrain][:slope_sign] = r[:terrain][:slope].sign r[:impact][:angle] = geometry.angle_between_lines(body.trajectory, impact[:terrain], replace_infinity: infinity_alias) r[:impact][:point] = { x: impact[:point].x, y: impact[:point].y } r[:impact][:same_slope_sign] = r[:body][:slope_sign] == r[:terrain][:slope_sign] r[:impact][:ray] = body.ray_current r[:body][:new_on_floor] = body.on_floor r[:body][:new_floor] = r[:terrain][:line] if r[:impact][:angle].abs < 90 && r[:terrain][:slope].abs < 3 play_sound r[:body][:new_dy] = r[:body][:dy] * circle.elasticity * -1 r[:body][:new_dx] = r[:body][:dx] * circle.elasticity r[:impact][:type] = :horizontal r[:body][:new_reason] = "-" elsif r[:impact][:angle].abs < 90 && r[:terrain][:slope].abs > 3 play_sound r[:body][:new_dy] = r[:body][:dy] * 1.1 r[:body][:new_dx] = r[:body][:dx] * -circle.elasticity r[:impact][:type] = :vertical r[:body][:new_reason] = "|" else play_sound r[:body][:new_dx] = r[:body][:dx] * -circle.elasticity r[:body][:new_dy] = r[:body][:dy] * -circle.elasticity r[:impact][:type] = :slanted r[:body][:new_reason] = "/" end r[:impact][:energy] = r[:body][:new_dx].abs + r[:body][:new_dy].abs if r[:impact][:energy] <= 0.3 && r[:terrain][:slope].abs < 4 r[:body][:new_dx] = 0 r[:body][:new_dy] = 0 r[:impact][:energy] = 0 r[:body][:new_on_floor] = true r[:body][:new_floor] = r[:terrain][:line] r[:body][:new_reason] = "0" end r[:impact][:ray_next] = geometry.ray_test({ x: r[:body][:x] - (r[:body][:dx] * 1.1) + r[:body][:new_dx], y: r[:body][:y] - (r[:body][:dy] * 1.1) + r[:body][:new_dy] + state.gravity }, r[:terrain][:line]) if r[:impact][:ray_next] == r[:impact][:ray] r[:body][:new_dx] *= -1 r[:body][:new_dy] *= -1 r[:body][:new_reason] = "clip" end r end def game_over! circle.x = circle.check_point_x circle.y = circle.check_point_y circle.dx = 0 circle.dy = 0 circle.game_over_at = state.tick_count end def not_game_over! impact_history_entry = impact_result circle, circle.impact circle.impact_history << impact_history_entry circle.x -= circle.dx * 1.1 circle.y -= circle.dy * 1.1 circle.dx = impact_history_entry[:body][:new_dx] circle.dy = impact_history_entry[:body][:new_dy] circle.on_floor = impact_history_entry[:body][:new_on_floor] if circle.on_floor circle.check_point_at = state.tick_count circle.check_point_x = circle.x circle.check_point_y = circle.y end circle.previous_floor = circle.floor || {} circle.floor = impact_history_entry[:body][:new_floor] || {} circle.floor_point = impact_history_entry[:impact][:point] if circle.floor.slice(:x, :y, :x2, :y2) != circle.previous_floor.slice(:x, :y, :x2, :y2) new_relative_x = if circle.dx > 0 :right elsif circle.dx < 0 :left else nil end new_relative_y = if circle.dy > 0 :above elsif circle.dy < 0 :below else nil end circle.floor_relative_x = new_relative_x circle.floor_relative_y = new_relative_y end circle.impact = nil circle.terrains_to_monitor.clear end def calc_physics if args.state.god_mode calc_potential_impacts calc_terrains_to_monitor return end if circle.y < -700 game_over return end return if state.game_over return if circle.on_floor circle.previous_dy = circle.dy circle.previous_dx = circle.dx circle.x += circle.dx circle.y += circle.dy args.state.distance_traveled ||= 0 args.state.distance_traveled += circle.dx.abs + circle.dy.abs circle.dy += state.gravity calc_potential_impacts calc_terrains_to_monitor return unless circle.impact if circle.impact && circle.impact[:type] == :lava game_over! else not_game_over! end end def input_god_mode state.debug_mode = !state.debug_mode if inputs.keyboard.key_down.forward_slash # toggle god mode if inputs.keyboard.key_down.g state.god_mode = !state.god_mode state.potential_lift = 0 circle.floor = nil circle.floor_point = nil circle.floor_relative_x = nil circle.floor_relative_y = nil circle.impact = nil circle.terrains_to_monitor.clear return end return unless state.god_mode circle.x = circle.x.to_i circle.y = circle.y.to_i # move god circle if inputs.keyboard.left || inputs.keyboard.a circle.x -= 20 elsif inputs.keyboard.right || inputs.keyboard.d || inputs.keyboard.f circle.x += 20 end if inputs.keyboard.up || inputs.keyboard.w circle.y += 20 elsif inputs.keyboard.down || inputs.keyboard.s circle.y -= 20 end # delete terrain if inputs.keyboard.key_down.x calc_terrains_to_monitor state.terrain = state.terrain.reject do |t| t[:rect].intersect_rect? circle.rect end state.lava = state.lava.reject do |t| t[:rect].intersect_rect? circle.rect end calc_potential_impacts save_level end # change terrain type if inputs.keyboard.key_down.l if state.line_mode == :terrain state.line_mode = :lava else state.line_mode = :terrain end end if inputs.mouse.click && !state.point_one state.point_one = inputs.mouse.click.point elsif inputs.mouse.click && state.point_one l = [*state.point_one, *inputs.mouse.click.point] l = [l.x - state.camera.x, l.y - state.camera.y, l.x2 - state.camera.x, l.y2 - state.camera.y].line.to_hash l[:rect] = rect_for_line l if state.line_mode == :terrain state.terrain << l else state.lava << l end save_level next_x = inputs.mouse.click.point.x - 640 next_y = inputs.mouse.click.point.y - 360 circle.x += next_x circle.y += next_y state.point_one = nil elsif inputs.keyboard.one state.point_one = [circle.x + camera.x, circle.y+ camera.y] end # cancel chain lines if inputs.keyboard.key_down.nine || inputs.keyboard.key_down.escape || inputs.keyboard.key_up.six || inputs.keyboard.key_up.one state.point_one = nil end end def play_sound return if state.sound_debounce > 0 state.sound_debounce = 5 outputs.sounds << "sounds/03#{"%02d" % state.sound_index}.wav" state.sound_index += 1 if state.sound_index > 21 state.sound_index = 1 end end def input_game if inputs.keyboard.down || inputs.keyboard.space circle.potential_lift += 0.03 circle.potential_lift = circle.potential_lift.lesser(10) elsif inputs.keyboard.key_up.down || inputs.keyboard.key_up.space play_sound circle.dy += circle.angle.vector_y circle.potential_lift circle.dx += circle.angle.vector_x circle.potential_lift if circle.on_floor if circle.floor_relative_y == :above circle.y += circle.potential_lift.abs * 2 elsif circle.floor_relative_y == :below circle.y -= circle.potential_lift.abs * 2 end end circle.on_floor = false circle.potential_lift = 0 circle.terrains_to_monitor.clear circle.impact_history.clear circle.impact = nil calc_physics end # aim probe if inputs.keyboard.right || inputs.keyboard.a circle.angle -= 2 elsif inputs.keyboard.left || inputs.keyboard.d circle.angle += 2 end end def input input_god_mode input_game end def calc_camera state.camera.target_x = 640 - circle.x state.camera.target_y = 360 - circle.y xdiff = state.camera.target_x - state.camera.x ydiff = state.camera.target_y - state.camera.y state.camera.x += xdiff * camera.follow_speed state.camera.y += ydiff * camera.follow_speed end def calc state.sound_debounce ||= 0 state.sound_debounce -= 1 state.sound_debounce = 0 if state.sound_debounce < 0 if state.god_mode circle.dy *= 0.1 circle.dx *= 0.1 end calc_camera state.whisp_queue ||= [] if state.tick_count.mod_zero?(4) state.whisp_queue << { x: -300, y: 1400 * rand, speed: 2.randomize(:ratio) + 3, w: 20, h: 20, path: 'sprites/whisp.png', a: 0, created_at: state.tick_count, angle: 0, r: 100, g: 128 + 128 * rand, b: 128 + 128 * rand } end state.whisp_queue.each do |w| w.x += w[:speed] * 2 w.x -= circle.dx * 0.3 w.y -= w[:speed] w.y -= circle.dy * 0.3 w.angle += w[:speed] w.a = w[:created_at].ease(30) * 255 end state.whisp_queue = state.whisp_queue.reject { |w| w[:x] > 1280 } if state.tick_count.mod_zero?(2) && (circle.dx != 0 || circle.dy != 0) circle.after_images << { x: circle.x, y: circle.y, w: circle.radius, h: circle.radius, a: 255, created_at: state.tick_count } end circle.after_images.each do |ai| ai.a = ai[:created_at].ease(10, :flip) * 255 end circle.after_images = circle.after_images.reject { |ai| ai[:created_at].elapsed_time > 10 } calc_physics end def circle state.circle end def camera state.camera end def terrain state.terrain end def lava state.lava end end # $gtk.reset def tick args args.outputs.background_color = [0, 0, 0] if args.inputs.keyboard.r args.gtk.reset return end # uncomment the line below to slow down the game so you # can see each tick as it passes # args.gtk.slowmo! 30 $game ||= FallingCircle.new $game.args = args $game.tick end def reset $game = nil endPlatformer - The Little Probe - Data - level.txt
# ./samples/99_genre_platformer/the_little_probe/data/level.txt 640,8840,1180,8840 -60,10220,0,9960 -60,10220,0,10500 0,10500,0,10780 0,10780,40,10900 500,10920,760,10960 300,10560,820,10600 420,10320,700,10300 820,10600,1500,10600 1500,10600,1940,10600 1940,10600,2380,10580 2380,10580,2800,10620 2240,11080,2480,11020 2000,11120,2240,11080 1760,11180,2000,11120 1620,11180,1760,11180 1500,11220,1620,11180 1180,11280,1340,11220 1040,11240,1180,11280 840,11280,1040,11240 640,11280,840,11280 500,11220,640,11280 420,11140,500,11220 240,11100,420,11140 100,11120,240,11100 0,11180,100,11120 -160,11220,0,11180 -260,11240,-160,11220 1340,11220,1500,11220 960,13300,1280,13060 1280,13060,1540,12860 1540,12860,1820,12700 1820,12700,2080,12520 2080,12520,2240,12400 2240,12400,2240,12240 2240,12240,2400,12080 2400,12080,2560,11920 2560,11920,2640,11740 2640,11740,2740,11580 2740,11580,2800,11400 2800,11400,2800,11240 2740,11140,2800,11240 2700,11040,2740,11140 2700,11040,2740,10960 2740,10960,2740,10920 2700,10900,2740,10920 2380,10900,2700,10900 2040,10920,2380,10900 1720,10940,2040,10920 1380,11000,1720,10940 1180,10980,1380,11000 900,10980,1180,10980 760,10960,900,10980 240,10960,500,10920 40,10900,240,10960 0,9700,0,9960 -60,9500,0,9700 -60,9420,-60,9500 -60,9420,-60,9340 -60,9340,-60,9280 -60,9120,-60,9280 -60,8940,-60,9120 -60,8940,-60,8780 -60,8780,0,8700 0,8700,40,8680 40,8680,240,8700 240,8700,360,8780 360,8780,640,8840 1420,8400,1540,8480 1540,8480,1680,8500 1680,8500,1940,8460 1180,8840,1280,8880 1280,8880,1340,8860 1340,8860,1720,8860 1720,8860,1820,8920 1820,8920,1820,9140 1820,9140,1820,9280 1820,9460,1820,9280 1760,9480,1820,9460 1640,9480,1760,9480 1540,9500,1640,9480 1340,9500,1540,9500 1100,9500,1340,9500 1040,9540,1100,9500 960,9540,1040,9540 300,9420,360,9460 240,9440,300,9420 180,9600,240,9440 120,9660,180,9600 100,9820,120,9660 100,9820,120,9860 120,9860,140,9900 140,9900,140,10000 140,10440,180,10540 100,10080,140,10000 100,10080,140,10100 140,10100,140,10440 180,10540,300,10560 2140,9560,2140,9640 2140,9720,2140,9640 1880,9780,2140,9720 1720,9780,1880,9780 1620,9740,1720,9780 1500,9780,1620,9740 1380,9780,1500,9780 1340,9820,1380,9780 1200,9820,1340,9820 1100,9780,1200,9820 900,9780,1100,9780 820,9720,900,9780 540,9720,820,9720 360,9840,540,9720 360,9840,360,9960 360,9960,360,10080 360,10140,360,10080 360,10140,360,10240 360,10240,420,10320 700,10300,820,10280 820,10280,820,10280 820,10280,900,10320 900,10320,1040,10300 1040,10300,1200,10320 1200,10320,1380,10280 1380,10280,1500,10300 1500,10300,1760,10300 2800,10620,2840,10600 2840,10600,2900,10600 2900,10600,3000,10620 3000,10620,3080,10620 3080,10620,3140,10600 3140,10540,3140,10600 3140,10540,3140,10460 3140,10460,3140,10360 3140,10360,3140,10260 3140,10260,3140,10140 3140,10140,3140,10000 3140,10000,3140,9860 3140,9860,3160,9720 3160,9720,3160,9580 3160,9580,3160,9440 3160,9300,3160,9440 3160,9300,3160,9140 3160,9140,3160,8980 3160,8980,3160,8820 3160,8820,3160,8680 3160,8680,3160,8520 1760,10300,1880,10300 660,9500,960,9540 640,9460,660,9500 360,9460,640,9460 -480,10760,-440,10880 -480,11020,-440,10880 -480,11160,-260,11240 -480,11020,-480,11160 -600,11420,-380,11320 -380,11320,-200,11340 -200,11340,0,11340 0,11340,180,11340 960,13420,960,13300 960,13420,960,13520 960,13520,1000,13560 1000,13560,1040,13540 1040,13540,1200,13440 1200,13440,1380,13380 1380,13380,1620,13300 1620,13300,1820,13220 1820,13220,2000,13200 2000,13200,2240,13200 2240,13200,2440,13160 2440,13160,2640,13040 -480,10760,-440,10620 -440,10620,-360,10560 -380,10460,-360,10560 -380,10460,-360,10300 -380,10140,-360,10300 -380,10140,-380,10040 -380,9880,-380,10040 -380,9720,-380,9880 -380,9720,-380,9540 -380,9360,-380,9540 -380,9180,-380,9360 -380,9180,-380,9000 -380,8840,-380,9000 -380,8840,-380,8760 -380,8760,-380,8620 -380,8620,-380,8520 -380,8520,-360,8400 -360,8400,-100,8400 -100,8400,-60,8420 -60,8420,240,8440 240,8440,240,8380 240,8380,500,8440 500,8440,760,8460 760,8460,1000,8400 1000,8400,1180,8420 1180,8420,1420,8400 1940,8460,2140,8420 2140,8420,2200,8520 2200,8680,2200,8520 2140,8840,2200,8680 2140,8840,2140,9020 2140,9100,2140,9020 2140,9200,2140,9100 2140,9200,2200,9320 2200,9320,2200,9440 2140,9560,2200,9440 1880,10300,2200,10280 2200,10280,2480,10260 2480,10260,2700,10240 2700,10240,2840,10180 2840,10180,2900,10060 2900,9860,2900,10060 2900,9640,2900,9860 2900,9640,2900,9500 2900,9460,2900,9500 2740,9460,2900,9460 2700,9460,2740,9460 2700,9360,2700,9460 2700,9320,2700,9360 2600,9320,2700,9320 2600,9260,2600,9320 2600,9200,2600,9260 2480,9120,2600,9200 2440,9080,2480,9120 2380,9080,2440,9080 2320,9060,2380,9080 2320,8860,2320,9060 2320,8860,2380,8840 2380,8840,2480,8860 2480,8860,2600,8840 2600,8840,2740,8840 2740,8840,2840,8800 2840,8800,2900,8700 2900,8600,2900,8700 2900,8480,2900,8600 2900,8380,2900,8480 2900,8380,2900,8260 2900,8260,2900,8140 2900,8140,2900,8020 2900,8020,2900,7900 2900,7820,2900,7900 2900,7820,2900,7740 2900,7660,2900,7740 2900,7560,2900,7660 2900,7460,2900,7560 2900,7460,2900,7360 2900,7260,2900,7360 2840,7160,2900,7260 2800,7080,2840,7160 2700,7100,2800,7080 2560,7120,2700,7100 2400,7100,2560,7120 2320,7100,2400,7100 2140,7100,2320,7100 2040,7080,2140,7100 1940,7080,2040,7080 1820,7140,1940,7080 1680,7140,1820,7140 1540,7140,1680,7140 1420,7220,1540,7140 1280,7220,1380,7220 1140,7200,1280,7220 1000,7220,1140,7200 760,7280,900,7320 540,7220,760,7280 300,7180,540,7220 180,7120,180,7160 40,7140,180,7120 -60,7160,40,7140 -200,7120,-60,7160 180,7160,300,7180 -260,7060,-200,7120 -260,6980,-260,7060 -260,6880,-260,6980 -260,6880,-260,6820 -260,6820,-200,6760 -200,6760,-100,6740 -100,6740,-60,6740 -60,6740,40,6740 40,6740,300,6800 300,6800,420,6760 420,6760,500,6740 500,6740,540,6760 540,6760,540,6760 540,6760,640,6780 640,6660,640,6780 580,6580,640,6660 580,6440,580,6580 580,6440,640,6320 640,6320,640,6180 580,6080,640,6180 580,6080,640,5960 640,5960,640,5840 640,5840,640,5700 640,5700,660,5560 660,5560,660,5440 660,5440,660,5300 660,5140,660,5300 660,5140,660,5000 660,5000,660,4880 660,4880,820,4860 820,4860,1000,4840 1000,4840,1100,4860 1100,4860,1280,4860 1280,4860,1420,4840 1420,4840,1580,4860 1580,4860,1720,4820 1720,4820,1880,4860 1880,4860,2000,4840 2000,4840,2140,4840 2140,4840,2320,4860 2320,4860,2440,4880 2440,4880,2600,4880 2600,4880,2800,4880 2800,4880,2900,4880 2900,4880,2900,4820 2900,4740,2900,4820 2800,4700,2900,4740 2520,4680,2800,4700 2240,4660,2520,4680 1940,4620,2240,4660 1820,4580,1940,4620 1820,4500,1820,4580 1820,4500,1880,4420 1880,4420,2000,4420 2000,4420,2200,4420 2200,4420,2400,4440 2400,4440,2600,4440 2600,4440,2840,4440 2840,4440,2900,4400 2740,4260,2900,4280 2600,4240,2740,4260 2480,4280,2600,4240 2320,4240,2480,4280 2140,4220,2320,4240 1940,4220,2140,4220 1880,4160,1940,4220 1880,4160,1880,4080 1880,4080,2040,4040 2040,4040,2240,4060 2240,4060,2400,4040 2400,4040,2600,4060 2600,4060,2740,4020 2740,4020,2840,3940 2840,3780,2840,3940 2740,3660,2840,3780 2700,3680,2740,3660 2520,3700,2700,3680 2380,3700,2520,3700 2200,3720,2380,3700 2040,3720,2200,3720 1880,3700,2040,3720 1820,3680,1880,3700 1760,3600,1820,3680 1760,3600,1820,3480 1820,3480,1880,3440 1880,3440,1960,3460 1960,3460,2140,3460 2140,3460,2380,3460 2380,3460,2640,3440 2640,3440,2900,3380 2840,3280,2900,3380 2840,3280,2900,3200 2900,3200,2900,3140 2840,3020,2900,3140 2800,2960,2840,3020 2700,3000,2800,2960 2600,2980,2700,3000 2380,3000,2600,2980 2140,3000,2380,3000 1880,3000,2140,3000 1720,3040,1880,3000 1640,2960,1720,3040 1500,2940,1640,2960 1340,3000,1500,2940 1240,3000,1340,3000 1140,3020,1240,3000 1040,3000,1140,3020 960,2960,1040,3000 900,2960,960,2960 840,2840,900,2960 700,2820,840,2840 540,2820,700,2820 420,2820,540,2820 180,2800,420,2820 60,2780,180,2800 -60,2800,60,2780 -160,2760,-60,2800 -260,2740,-160,2760 -300,2640,-260,2740 -360,2560,-300,2640 -380,2460,-360,2560 -380,2460,-300,2380 -300,2300,-300,2380 -300,2300,-300,2220 -300,2100,-300,2220 -300,2100,-300,2040 -300,2040,-160,2040 -160,2040,-60,2040 -60,2040,60,2040 60,2040,180,2040 180,2040,360,2040 360,2040,540,2040 540,2040,700,2080 660,2160,700,2080 660,2160,700,2260 660,2380,700,2260 500,2340,660,2380 360,2340,500,2340 240,2340,360,2340 40,2320,240,2340 -60,2320,40,2320 -100,2380,-60,2320 -100,2380,-100,2460 -100,2460,-100,2540 -100,2540,0,2560 0,2560,140,2600 140,2600,300,2600 300,2600,460,2600 460,2600,640,2600 640,2600,760,2580 760,2580,820,2560 820,2560,820,2500 820,2500,820,2400 820,2400,840,2320 840,2320,840,2240 820,2120,840,2240 820,2020,820,2120 820,1900,820,2020 760,1840,820,1900 640,1840,760,1840 500,1840,640,1840 300,1860,420,1880 180,1840,300,1860 420,1880,500,1840 0,1840,180,1840 -60,1860,0,1840 -160,1840,-60,1860 -200,1800,-160,1840 -260,1760,-200,1800 -260,1680,-260,1760 -260,1620,-260,1680 -260,1540,-260,1620 -260,1540,-260,1460 -300,1420,-260,1460 -300,1420,-300,1340 -300,1340,-260,1260 -260,1260,-260,1160 -260,1060,-260,1160 -260,1060,-260,960 -260,880,-260,960 -260,880,-260,780 -260,780,-260,680 -300,580,-260,680 -300,580,-300,480 -300,480,-260,400 -300,320,-260,400 -300,320,-300,240 -300,240,-200,220 -200,220,-200,160 -200,160,-100,140 -100,140,0,120 0,120,60,120 60,120,180,120 180,120,300,120 300,120,420,140 420,140,580,180 580,180,760,180 760,180,900,180 960,180,1100,180 1100,180,1340,200 1340,200,1580,200 1580,200,1720,180 1720,180,2000,140 2000,140,2240,140 2240,140,2480,140 2520,140,2800,160 2800,160,3000,160 3000,160,3140,160 3140,260,3140,160 3140,260,3140,380 3080,500,3140,380 3080,620,3080,500 3080,620,3080,740 3080,740,3080,840 3080,960,3080,840 3080,1080,3080,960 3080,1080,3080,1200 3080,1200,3080,1340 3080,1340,3080,1460 3080,1580,3080,1460 3080,1700,3080,1580 3080,1700,3080,1760 3080,1760,3200,1760 3200,1760,3320,1760 3320,1760,3520,1760 3520,1760,3680,1740 3680,1740,3780,1700 3780,1700,3840,1620 3840,1620,3840,1520 3840,1520,3840,1420 3840,1320,3840,1420 3840,1120,3840,1320 3840,1120,3840,940 3840,940,3840,760 3780,600,3840,760 3780,600,3780,440 3780,320,3780,440 3780,320,3780,160 3780,60,3780,160 3780,60,4020,60 4020,60,4260,40 4260,40,4500,40 4500,40,4740,40 4740,40,4840,20 4840,20,4880,80 4880,80,5080,40 5080,40,5280,20 5280,20,5500,0 5500,0,5720,0 5720,0,5940,60 5940,60,6240,60 6240,60,6540,20 6540,20,6840,20 6840,20,7040,0 7040,0,7140,0 7140,0,7400,20 7400,20,7680,0 7680,0,7940,0 7940,0,8200,-20 8200,-20,8360,20 8360,20,8560,-40 8560,-40,8760,0 8760,0,8880,40 8880,120,8880,40 8840,220,8840,120 8620,240,8840,220 8420,260,8620,240 8200,280,8420,260 7940,280,8200,280 7760,240,7940,280 7560,220,7760,240 7360,280,7560,220 7140,260,7360,280 6940,240,7140,260 6720,220,6940,240 6480,220,6720,220 6360,300,6480,220 6240,300,6360,300 6200,500,6240,300 6200,500,6360,540 6360,540,6540,520 6540,520,6720,480 6720,480,6880,460 6880,460,7080,500 7080,500,7320,500 7320,500,7680,500 7680,620,7680,500 7520,640,7680,620 7360,640,7520,640 7200,640,7360,640 7040,660,7200,640 6880,720,7040,660 6720,700,6880,720 6540,700,6720,700 6420,760,6540,700 6280,740,6420,760 6240,760,6280,740 6200,920,6240,760 6200,920,6360,960 6360,960,6540,960 6540,960,6720,960 6720,960,6760,980 6760,980,6880,940 6880,940,7080,940 7080,940,7280,940 7280,940,7520,920 7520,920,7760,900 7760,900,7980,860 7980,860,8100,880 8100,880,8280,900 8280,900,8500,820 8500,820,8700,820 8700,820,8760,840 8760,960,8760,840 8700,1040,8760,960 8560,1060,8700,1040 8460,1080,8560,1060 8360,1040,8460,1080 8280,1080,8360,1040 8160,1120,8280,1080 8040,1120,8160,1120 7940,1100,8040,1120 7800,1120,7940,1100 7680,1120,7800,1120 7520,1100,7680,1120 7360,1100,7520,1100 7200,1120,7360,1100 7040,1180,7200,1120 6880,1160,7040,1180 6720,1160,6880,1160 6540,1160,6720,1160 6360,1160,6540,1160 6200,1160,6360,1160 6040,1220,6200,1160 6040,1220,6040,1400 6040,1400,6200,1440 6200,1440,6320,1440 6320,1440,6440,1440 6600,1440,6760,1440 6760,1440,6940,1420 6440,1440,6600,1440 6940,1420,7280,1400 7280,1400,7560,1400 7560,1400,7760,1400 7760,1400,7940,1360 7940,1360,8100,1380 8100,1380,8280,1340 8280,1340,8460,1320 8660,1300,8760,1360 8460,1320,8660,1300 8760,1360,8800,1500 8800,1660,8800,1500 8800,1660,8800,1820 8700,1840,8800,1820 8620,1860,8700,1840 8560,1800,8620,1860 8560,1800,8620,1680 8500,1640,8620,1680 8420,1680,8500,1640 8280,1680,8420,1680 8160,1680,8280,1680 7900,1680,8160,1680 7680,1680,7900,1680 7400,1660,7680,1680 7140,1680,7400,1660 6880,1640,7140,1680 6040,1820,6320,1780 5900,1840,6040,1820 6640,1700,6880,1640 6320,1780,6640,1700 5840,2040,5900,1840 5840,2040,5840,2220 5840,2220,5840,2320 5840,2460,5840,2320 5840,2560,5840,2460 5840,2560,5960,2620 5960,2620,6200,2620 6200,2620,6380,2600 6380,2600,6600,2580 6600,2580,6800,2600 6800,2600,7040,2580 7040,2580,7280,2580 7280,2580,7480,2560 7760,2540,7980,2520 7980,2520,8160,2500 7480,2560,7760,2540 8160,2500,8160,2420 8160,2420,8160,2320 8160,2180,8160,2320 7980,2160,8160,2180 7800,2180,7980,2160 7600,2200,7800,2180 7400,2200,7600,2200 6960,2200,7200,2200 7200,2200,7400,2200 6720,2200,6960,2200 6540,2180,6720,2200 6320,2200,6540,2180 6240,2160,6320,2200 6240,2160,6240,2040 6240,2040,6240,1940 6240,1940,6440,1940 6440,1940,6720,1940 6720,1940,6940,1920 7520,1920,7760,1920 6940,1920,7280,1920 7280,1920,7520,1920 7760,1920,8100,1900 8100,1900,8420,1900 8420,1900,8460,1940 8460,2120,8460,1940 8460,2280,8460,2120 8460,2280,8560,2420 8560,2420,8660,2380 8660,2380,8800,2340 8800,2340,8840,2400 8840,2520,8840,2400 8800,2620,8840,2520 8800,2740,8800,2620 8800,2860,8800,2740 8800,2940,8800,2860 8760,2980,8800,2940 8660,2980,8760,2980 8620,2960,8660,2980 8560,2880,8620,2960 8560,2880,8560,2780 8500,2740,8560,2780 8420,2760,8500,2740 8420,2840,8420,2760 8420,2840,8420,2940 8420,3040,8420,2940 8420,3160,8420,3040 8420,3280,8420,3380 8420,3280,8420,3160 8420,3380,8620,3460 8620,3460,8760,3460 8760,3460,8840,3400 8840,3400,8960,3400 8960,3400,9000,3500 9000,3700,9000,3500 9000,3900,9000,3700 9000,4080,9000,3900 9000,4280,9000,4080 9000,4500,9000,4280 9000,4620,9000,4500 9000,4780,9000,4620 9000,4780,9000,4960 9000,5120,9000,4960 9000,5120,9000,5300 8960,5460,9000,5300 8920,5620,8960,5460 8920,5620,8920,5800 8920,5800,8920,5960 8920,5960,8920,6120 8920,6120,8960,6300 8960,6300,8960,6480 8960,6660,8960,6480 8960,6860,8960,6660 8960,7040,8960,6860 8920,7420,8920,7220 8920,7420,8960,7620 8960,7620,8960,7800 8960,7800,8960,8000 8960,8000,8960,8180 8960,8180,8960,8380 8960,8580,8960,8380 8920,8800,8960,8580 8880,9000,8920,8800 8840,9180,8880,9000 8800,9220,8840,9180 8800,9220,8840,9340 8760,9380,8840,9340 8560,9340,8760,9380 8360,9360,8560,9340 8160,9360,8360,9360 8040,9340,8160,9360 7860,9360,8040,9340 7680,9360,7860,9360 7520,9360,7680,9360 7420,9260,7520,9360 7400,9080,7420,9260 7400,9080,7420,8860 7420,8860,7440,8720 7440,8720,7480,8660 7480,8660,7520,8540 7520,8540,7600,8460 7600,8460,7800,8480 7800,8480,8040,8480 8040,8480,8280,8480 8280,8480,8500,8460 8500,8460,8620,8440 8620,8440,8660,8340 8660,8340,8660,8220 8660,8220,8700,8080 8700,8080,8700,7920 8700,7920,8700,7760 8700,7760,8700,7620 8700,7480,8700,7620 8700,7480,8700,7320 8700,7160,8700,7320 8920,7220,8960,7040 8660,7040,8700,7160 8660,7040,8700,6880 8660,6700,8700,6880 8660,6700,8700,6580 8700,6460,8700,6580 8700,6460,8700,6320 8700,6160,8700,6320 8700,6160,8760,6020 8760,6020,8760,5860 8760,5860,8760,5700 8760,5700,8760,5540 8760,5540,8760,5360 8760,5360,8760,5180 8760,5000,8760,5180 8700,4820,8760,5000 8560,4740,8700,4820 8420,4700,8560,4740 8280,4700,8420,4700 8100,4700,8280,4700 7980,4700,8100,4700 7820,4740,7980,4700 7800,4920,7820,4740 7800,4920,7900,4960 7900,4960,8060,4980 8060,4980,8220,5000 8220,5000,8420,5040 8420,5040,8460,5120 8460,5180,8460,5120 8360,5200,8460,5180 8360,5280,8360,5200 8160,5300,8360,5280 8040,5260,8160,5300 7860,5220,8040,5260 7720,5160,7860,5220 7640,5120,7720,5160 7480,5120,7640,5120 7240,5120,7480,5120 7000,5120,7240,5120 6800,5160,7000,5120 6640,5220,6800,5160 6600,5360,6640,5220 6600,5460,6600,5360 6480,5520,6600,5460 6240,5540,6480,5520 5980,5540,6240,5540 5740,5540,5980,5540 5500,5520,5740,5540 5400,5520,5500,5520 5280,5540,5400,5520 5080,5540,5280,5540 4940,5540,5080,5540 4760,5540,4940,5540 4600,5540,4760,5540 4440,5560,4600,5540 4040,5580,4120,5520 4260,5540,4440,5560 4120,5520,4260,5540 4020,5720,4040,5580 4020,5840,4020,5720 4020,5840,4080,5940 4080,5940,4120,6040 4120,6040,4200,6080 4200,6080,4340,6080 4340,6080,4500,6060 4500,6060,4700,6060 4700,6060,4880,6060 4880,6060,5080,6060 5080,6060,5280,6080 5280,6080,5440,6100 5440,6100,5660,6100 5660,6100,5900,6080 5900,6080,6120,6080 6120,6080,6360,6080 6360,6080,6480,6100 6480,6100,6540,6060 6540,6060,6720,6060 6720,6060,6940,6060 6940,6060,7140,6060 7400,6060,7600,6060 7140,6060,7400,6060 7600,6060,7800,6060 7800,6060,7860,6080 7860,6080,8060,6080 8060,6080,8220,6080 8220,6080,8320,6140 8320,6140,8360,6300 8320,6460,8360,6300 8320,6620,8320,6460 8320,6800,8320,6620 8320,6960,8320,6800 8320,6960,8360,7120 8320,7280,8360,7120 8320,7440,8320,7280 8320,7600,8320,7440 8100,7580,8220,7600 8220,7600,8320,7600 7900,7560,8100,7580 7680,7560,7900,7560 7480,7580,7680,7560 7280,7580,7480,7580 7080,7580,7280,7580 7000,7600,7080,7580 6880,7600,7000,7600 6800,7580,6880,7600 6640,7580,6800,7580 6540,7580,6640,7580 6380,7600,6540,7580 6280,7620,6380,7600 6240,7700,6280,7620 6240,7700,6240,7800 6240,7840,6240,7800 6080,7840,6240,7840 5960,7820,6080,7840 5660,7840,5800,7840 5500,7800,5660,7840 5440,7700,5500,7800 5800,7840,5960,7820 5440,7540,5440,7700 5440,7440,5440,7540 5440,7320,5440,7440 5400,7320,5440,7320 5340,7400,5400,7320 5340,7400,5340,7500 5340,7600,5340,7500 5340,7600,5340,7720 5340,7720,5340,7860 5340,7860,5340,7960 5340,7960,5440,8020 5440,8020,5560,8020 5560,8020,5720,8040 5720,8040,5900,8060 5900,8060,6080,8060 6080,8060,6240,8060 6720,8040,6840,8060 6240,8060,6480,8040 6480,8040,6720,8040 6840,8060,6940,8060 6940,8060,7080,8120 7080,8120,7140,8180 7140,8460,7140,8320 7140,8620,7140,8460 7140,8620,7140,8740 7140,8860,7140,8740 7140,8960,7140,8860 7140,8960,7200,9080 7140,9200,7200,9080 7140,9200,7200,9320 7200,9320,7200,9460 7200,9760,7200,9900 7200,9620,7200,9460 7200,9620,7200,9760 7200,9900,7200,10060 7200,10220,7200,10060 7200,10360,7200,10220 7140,10400,7200,10360 6880,10400,7140,10400 6640,10360,6880,10400 6420,10360,6640,10360 6160,10380,6420,10360 5940,10340,6160,10380 5720,10320,5940,10340 5500,10340,5720,10320 5280,10300,5500,10340 5080,10300,5280,10300 4840,10280,5080,10300 4700,10280,4840,10280 4540,10280,4700,10280 4360,10280,4540,10280 4200,10300,4360,10280 4040,10380,4200,10300 4020,10500,4040,10380 3980,10640,4020,10500 3980,10640,3980,10760 3980,10760,4020,10920 4020,10920,4080,11000 4080,11000,4340,11020 4340,11020,4600,11060 4600,11060,4840,11040 4840,11040,4880,10960 4880,10740,4880,10960 4880,10740,4880,10600 4880,10600,5080,10560 5080,10560,5340,10620 5340,10620,5660,10620 5660,10620,6040,10600 6040,10600,6120,10620 6120,10620,6240,10720 6240,10720,6420,10740 6420,10740,6640,10760 6640,10760,6880,10780 7140,10780,7400,10780 6880,10780,7140,10780 7400,10780,7680,10780 7680,10780,8100,10760 8100,10760,8460,10740 8460,10740,8700,10760 8800,10840,8800,10980 8700,10760,8800,10840 8760,11200,8800,10980 8760,11200,8760,11380 8760,11380,8800,11560 8760,11680,8800,11560 8760,11760,8760,11680 8760,11760,8760,11920 8760,11920,8800,12080 8800,12200,8800,12080 8700,12240,8800,12200 8560,12220,8700,12240 8360,12220,8560,12220 8160,12240,8360,12220 7720,12220,7980,12220 7980,12220,8160,12240 7400,12200,7720,12220 7200,12180,7400,12200 7000,12160,7200,12180 6800,12160,7000,12160 6280,12140,6380,12180 6120,12180,6280,12140 6540,12180,6800,12160 6380,12180,6540,12180 5900,12200,6120,12180 5620,12180,5900,12200 5340,12120,5620,12180 5140,12100,5340,12120 4980,12120,5140,12100 4840,12120,4980,12120 4700,12200,4840,12120 4700,12380,4700,12200 4740,12480,4940,12520 4700,12380,4740,12480 4940,12520,5160,12560 5160,12560,5340,12600 5340,12600,5400,12600 5400,12600,5500,12600 5500,12600,5620,12600 5620,12600,5720,12560 5720,12560,5800,12440 5800,12440,5900,12380 5900,12380,6120,12420 6120,12420,6380,12440 6380,12440,6600,12460 6720,12460,6840,12520 6840,12520,6960,12520 6600,12460,6720,12460 6960,12520,7040,12500 7040,12500,7140,12440 7200,12440,7360,12500 7360,12500,7600,12560 7600,12560,7860,12600 7860,12600,8060,12500 8100,12500,8200,12340 8200,12340,8360,12360 8360,12360,8560,12400 8560,12400,8660,12420 8660,12420,8840,12400 8840,12400,9000,12360 9000,12360,9000,12360 2900,4400,2900,4280 900,7320,1000,7220 2640,13040,2900,12920 2900,12920,3160,12840 3480,12760,3780,12620 3780,12620,4020,12460 4300,12360,4440,12260 4020,12460,4300,12360 3160,12840,3480,12760 4440,12080,4440,12260 4440,12080,4440,11880 4440,11880,4440,11720 4440,11720,4600,11720 4600,11720,4760,11740 4760,11740,4980,11760 4980,11760,5160,11760 5160,11760,5340,11780 6000,11860,6120,11820 5340,11780,5620,11820 5620,11820,6000,11860 6120,11820,6360,11820 6360,11820,6640,11860 6940,11920,7240,11940 7240,11940,7520,11960 7520,11960,7860,11960 7860,11960,8100,11920 8100,11920,8420,11940 8420,11940,8460,11960 8460,11960,8500,11860 8460,11760,8500,11860 8320,11720,8460,11760 8160,11720,8320,11720 7940,11720,8160,11720 7720,11700,7940,11720 7520,11680,7720,11700 7320,11680,7520,11680 7200,11620,7320,11680 7200,11620,7200,11500 7200,11500,7280,11440 7280,11440,7420,11440 7420,11440,7600,11440 7600,11440,7980,11460 7980,11460,8160,11460 8160,11460,8360,11460 8360,11460,8460,11400 8420,11060,8500,11200 8280,11040,8420,11060 8100,11060,8280,11040 8460,11400,8500,11200 7800,11060,8100,11060 7520,11060,7800,11060 7240,11060,7520,11060 6940,11040,7240,11060 6640,11000,6940,11040 6420,10980,6640,11000 6360,11060,6420,10980 6360,11180,6360,11060 6200,11280,6360,11180 5960,11300,6200,11280 5720,11280,5960,11300 5500,11280,5720,11280 4940,11300,5200,11280 4660,11260,4940,11300 4440,11280,4660,11260 4260,11280,4440,11280 4220,11220,4260,11280 4080,11280,4220,11220 3980,11420,4080,11280 3980,11420,4040,11620 4040,11620,4040,11820 3980,11960,4040,11820 3840,12000,3980,11960 3720,11940,3840,12000 3680,11800,3720,11940 3680,11580,3680,11800 3680,11360,3680,11580 3680,11360,3680,11260 3680,11080,3680,11260 3680,11080,3680,10880 3680,10700,3680,10880 3680,10700,3680,10620 3680,10480,3680,10620 3680,10480,3680,10300 3680,10300,3680,10100 3680,10100,3680,9940 3680,9940,3720,9860 3720,9860,3920,9900 3920,9900,4220,9880 4980,9940,5340,9960 4220,9880,4540,9900 4540,9900,4980,9940 5340,9960,5620,9960 5620,9960,5900,9960 5900,9960,6160,10000 6160,10000,6480,10000 6480,10000,6720,10000 6720,10000,6880,9860 6880,9860,6880,9520 6880,9520,6940,9340 6940,9120,6940,9340 6940,9120,6940,8920 6940,8700,6940,8920 6880,8500,6940,8700 6880,8320,6880,8500 7140,8320,7140,8180 6760,8260,6880,8320 6540,8240,6760,8260 6420,8180,6540,8240 6280,8240,6420,8180 6160,8300,6280,8240 6120,8400,6160,8300 6080,8520,6120,8400 5840,8480,6080,8520 5620,8500,5840,8480 5500,8500,5620,8500 5340,8560,5500,8500 5160,8540,5340,8560 4620,8520,4880,8520 4360,8480,4620,8520 4880,8520,5160,8540 4140,8440,4360,8480 3920,8460,4140,8440 3720,8380,3920,8460 3680,8160,3720,8380 3680,8160,3720,7940 3720,7720,3720,7940 3680,7580,3720,7720 3680,7580,3720,7440 3720,7440,3720,7300 3720,7160,3720,7300 3720,7160,3720,7020 3720,7020,3780,6900 3780,6900,4080,6940 4080,6940,4340,6980 4340,6980,4600,6980 4600,6980,4880,6980 4880,6980,5160,6980 5160,6980,5400,7000 5400,7000,5560,7020 5560,7020,5660,7080 5660,7080,5660,7280 5660,7280,5660,7440 5660,7440,5740,7520 5740,7520,5740,7600 5740,7600,5900,7600 5900,7600,6040,7540 6040,7540,6040,7320 6040,7320,6120,7200 6120,7200,6120,7040 6120,7040,6240,7000 6240,7000,6480,7060 6480,7060,6800,7060 6800,7060,7080,7080 7080,7080,7320,7100 7940,7100,7980,6920 7860,6860,7980,6920 7640,6860,7860,6860 7400,6840,7640,6860 7320,7100,7560,7120 7560,7120,7760,7120 7760,7120,7940,7100 7200,6820,7400,6840 7040,6820,7200,6820 6600,6840,6840,6840 6380,6800,6600,6840 6120,6800,6380,6800 5900,6840,6120,6800 5620,6820,5900,6840 5400,6800,5620,6820 5140,6800,5400,6800 4880,6780,5140,6800 4600,6760,4880,6780 4340,6760,4600,6760 4080,6760,4340,6760 3840,6740,4080,6760 3680,6720,3840,6740 3680,6720,3680,6560 3680,6560,3720,6400 3720,6400,3720,6200 3720,6200,3780,6000 3720,5780,3780,6000 3720,5580,3720,5780 3720,5360,3720,5580 3720,5360,3840,5240 3840,5240,4200,5260 4200,5260,4600,5280 4600,5280,4880,5280 4880,5280,5140,5200 5140,5200,5220,5100 5220,5100,5280,4900 5280,4900,5340,4840 5340,4840,5720,4880 6120,4880,6480,4860 6880,4840,7200,4860 6480,4860,6880,4840 7200,4860,7320,4860 7320,4860,7360,4740 7360,4600,7440,4520 7360,4600,7360,4740 7440,4520,7640,4520 7640,4520,7800,4480 7800,4480,7800,4280 7800,4280,7800,4040 7800,4040,7800,3780 7800,3560,7800,3780 7800,3560,7860,3440 7860,3440,8060,3460 8060,3460,8160,3340 8160,3340,8160,3140 8160,3140,8160,2960 8000,2900,8160,2960 7860,2900,8000,2900 7640,2940,7860,2900 7400,2980,7640,2940 7100,2980,7400,2980 6840,3000,7100,2980 5620,2980,5840,2980 5840,2980,6500,3000 6500,3000,6840,3000 5560,2780,5620,2980 5560,2780,5560,2580 5560,2580,5560,2380 5560,2140,5560,2380 5560,2140,5560,1900 5560,1900,5620,1660 5620,1660,5660,1460 5660,1460,5660,1300 5500,1260,5660,1300 5340,1260,5500,1260 4600,1220,4840,1240 4440,1220,4600,1220 4440,1080,4440,1220 4440,1080,4600,1020 5080,1260,5340,1260 4840,1240,5080,1260 4600,1020,4940,1020 4940,1020,5220,1020 5220,1020,5560,960 5560,960,5660,860 5660,740,5660,860 5280,740,5660,740 4940,780,5280,740 4660,760,4940,780 4500,700,4660,760 4500,520,4500,700 4500,520,4700,460 4700,460,5080,440 5440,420,5740,420 5080,440,5440,420 5740,420,5840,360 5800,280,5840,360 5560,280,5800,280 4980,300,5280,320 4360,320,4660,300 4200,360,4360,320 5280,320,5560,280 4660,300,4980,300 4140,480,4200,360 4140,480,4140,640 4140,640,4200,780 4200,780,4200,980 4200,980,4220,1180 4220,1400,4220,1180 4220,1400,4260,1540 4260,1540,4500,1540 4500,1540,4700,1520 4700,1520,4980,1540 5280,1560,5400,1560 4980,1540,5280,1560 5400,1560,5400,1700 5400,1780,5400,1700 5340,1900,5400,1780 5340,2020,5340,1900 5340,2220,5340,2020 5340,2220,5340,2420 5340,2420,5340,2520 5080,2600,5220,2580 5220,2580,5340,2520 4900,2580,5080,2600 4700,2540,4900,2580 4500,2540,4700,2540 4220,2580,4340,2540 4200,2700,4220,2580 4340,2540,4500,2540 3980,2740,4200,2700 3840,2740,3980,2740 3780,2640,3840,2740 3780,2640,3780,2460 3780,2280,3780,2460 3620,2020,3780,2100 3780,2280,3780,2100 3360,2040,3620,2020 3080,2040,3360,2040 2840,2020,3080,2040 2740,1940,2840,2020 2740,1940,2800,1800 2800,1640,2800,1800 2800,1640,2800,1460 2800,1300,2800,1460 2700,1180,2800,1300 2480,1140,2700,1180 1580,1200,1720,1200 2240,1180,2480,1140 1960,1180,2240,1180 1720,1200,1960,1180 1500,1320,1580,1200 1500,1440,1500,1320 1500,1440,1760,1480 1760,1480,1940,1480 1940,1480,2140,1500 2140,1500,2320,1520 2400,1560,2400,1700 2280,1820,2380,1780 2320,1520,2400,1560 2380,1780,2400,1700 2080,1840,2280,1820 1720,1820,2080,1840 1420,1800,1720,1820 1280,1800,1420,1800 1240,1720,1280,1800 1240,1720,1240,1600 1240,1600,1280,1480 1280,1340,1280,1480 1180,1280,1280,1340 1000,1280,1180,1280 760,1280,1000,1280 360,1240,540,1260 180,1220,360,1240 540,1260,760,1280 180,1080,180,1220 180,1080,180,1000 180,1000,360,940 360,940,540,960 540,960,820,980 1100,980,1200,920 820,980,1100,980 6640,11860,6940,11920 5200,11280,5500,11280 4120,7330,4120,7230 4120,7230,4660,7250 4660,7250,4940,7250 4940,7250,5050,7340 5010,7400,5050,7340 4680,7380,5010,7400 4380,7370,4680,7380 4120,7330,4360,7370 4120,7670,4120,7760 4120,7670,4280,7650 4280,7650,4540,7660 4550,7660,4820,7680 4820,7680,4900,7730 4880,7800,4900,7730 4620,7820,4880,7800 4360,7790,4620,7820 4120,7760,4360,7790 6840,6840,7040,6820 5720,4880,6120,4880 1200,920,1340,810 1340,810,1520,790 1520,790,1770,800 2400,790,2600,750 2600,750,2640,520 2520,470,2640,520 2140,470,2520,470 1760,800,2090,800 2080,800,2400,790 1760,450,2140,470 1420,450,1760,450 1180,440,1420,450 900,480,1180,440 640,450,900,480 360,440,620,450 120,430,360,440 0,520,120,430 -20,780,0,520 -20,780,-20,1020 -20,1020,-20,1150 -20,1150,0,1300 0,1470,60,1530 0,1300,0,1470 60,1530,360,1530 360,1530,660,1520 660,1520,980,1520 980,1520,1040,1520 1040,1520,1070,1560 1070,1770,1070,1560 1070,1770,1100,2010 1070,2230,1100,2010 1070,2240,1180,2340 1180,2340,1580,2340 1580,2340,1940,2350 1940,2350,2440,2350 2440,2350,2560,2380 2560,2380,2600,2540 2810,2640,3140,2680 2600,2540,2810,2640 3140,2680,3230,2780 3230,2780,3260,2970 3230,3220,3260,2970 3200,3470,3230,3220 3200,3480,3210,3760 3210,3760,3210,4040 3200,4040,3230,4310 3210,4530,3230,4310 3210,4530,3230,4730 3230,4960,3230,4730 3230,4960,3260,5190 3170,5330,3260,5190 2920,5330,3170,5330 2660,5360,2920,5330 2420,5330,2660,5360 2200,5280,2400,5330 2020,5280,2200,5280 1840,5260,2020,5280 1660,5280,1840,5260 1500,5300,1660,5280 1360,5270,1500,5300 1200,5290,1340,5270 1070,5400,1200,5290 1040,5630,1070,5400 1000,5900,1040,5630 980,6170,1000,5900 980,6280,980,6170 980,6540,980,6280 980,6540,1040,6720 1040,6720,1360,6730 1360,6730,1760,6710 2110,6720,2420,6730 1760,6710,2110,6720 2420,6730,2640,6720 2640,6720,2970,6720 2970,6720,3160,6700 3160,6700,3240,6710 3240,6710,3260,6890 3260,7020,3260,6890 3230,7180,3260,7020 3230,7350,3230,7180 3210,7510,3230,7350 3210,7510,3210,7690 3210,7870,3210,7690 3210,7870,3210,7980 3200,8120,3210,7980 3200,8330,3200,8120 3160,8520,3200,8330 2460,11100,2480,11020 2200,11180,2460,11100 1260,11350,1600,11320 600,11430,930,11400 180,11340,620,11430 1600,11320,1910,11280 1910,11280,2200,11180 923.0029599285435,11398.99893503157,1264.002959928544,11351.99893503157Platformer - The Little Probe - Data - level_lava.txt
# ./samples/99_genre_platformer/the_little_probe/data/level_lava.txt 100,10740,500,10780 500,10780,960,10760 960,10760,1340,10760 1380,10760,1820,10780 1820,10780,2240,10780 2280,10780,2740,10740 2740,10740,3000,10780 3000,10780,3140,11020 -520,8820,-480,9160 -520,8480,-520,8820 -520,8480,-480,8180 -480,8180,-200,8120 -200,8120,100,8220 100,8220,420,8240 420,8240,760,8260 760,8260,1140,8280 1140,8280,1500,8200 1500,8200,1880,8240 1880,8240,2240,8260 2240,8260,2320,8480 2320,8480,2380,8680 2240,8860,2380,8680 2240,9080,2240,8860 2240,9080,2320,9260 2320,9260,2480,9440 2480,9440,2600,9640 2480,9840,2600,9640 2400,10020,2480,9840 2240,10080,2400,10020 1960,10080,2240,10080 1720,10080,1960,10080 1460,10080,1720,10080 1180,10080,1420,10080 900,10080,1180,10080 640,10080,900,10080 640,10080,640,9900 60,10520,100,10740 40,10240,60,10520 40,10240,40,9960 40,9960,40,9680 40,9680,40,9360 40,9360,60,9080 60,9080,100,8860 100,8860,460,9040 460,9040,760,9220 760,9220,1140,9220 1140,9220,1720,9200 -660,11580,-600,11420 -660,11800,-660,11580 -660,12000,-660,11800 -660,12000,-600,12220 -600,12220,-600,12440 -600,12440,-600,12640 -600,11240,-260,11280 -260,11280,100,11240 9000,12360,9020,12400 9020,12620,9020,12400 9020,12840,9020,12620 9020,13060,9020,12840 9020,13060,9020,13240 9020,13240,9020,13420 9020,13420,9020,13600 9020,13600,9020,13780 8880,13900,9020,13780 8560,13800,8880,13900 8220,13780,8560,13800 7860,13760,8220,13780 7640,13780,7860,13760 7360,13800,7640,13780 7100,13800,7360,13800 6540,13760,6800,13780 6800,13780,7100,13800 6280,13760,6540,13760 5760,13760,6280,13760 5220,13780,5760,13760 4700,13760,5220,13780 4200,13740,4700,13760 3680,13720,4200,13740 3140,13700,3680,13720 2600,13680,3140,13700 2040,13940,2600,13680 1640,13940,2040,13940 1200,13960,1640,13940 840,14000,1200,13960 300,13960,840,14000 -200,13900,300,13960 -600,12840,-600,12640 -600,13140,-600,12840 -600,13140,-600,13420 -600,13700,-600,13420 -600,13700,-600,13820 -600,13820,-200,13900 -600,11240,-560,11000 -560,11000,-480,10840 -520,10660,-480,10840 -520,10660,-520,10480 -520,10480,-520,10300 -520,10260,-480,10080 -480,9880,-440,10060 -520,9680,-480,9880 -520,9680,-480,9400 -480,9400,-480,9160 1820,9880,2140,9800 1540,9880,1820,9880 1200,9920,1500,9880 900,9880,1200,9920 640,9900,840,9880 2380,8760,2800,8760 2800,8760,2840,8660 2840,8660,2840,8420 2840,8160,2840,8420 2800,7900,2840,8160 2800,7900,2800,7720 2800,7540,2800,7720 2800,7540,2800,7360 2700,7220,2800,7360 2400,7220,2700,7220 2080,7240,2400,7220 1760,7320,2080,7240 1380,7360,1720,7320 1040,7400,1340,7360 640,7400,1000,7420 300,7380,640,7400 0,7300,240,7380 -300,7180,-60,7300 -380,6860,-360,7180 -380,6880,-360,6700 -360,6700,-260,6540 -260,6540,0,6520 0,6520,240,6640 240,6640,460,6640 460,6640,500,6480 500,6260,500,6480 460,6060,500,6260 460,5860,460,6060 460,5860,500,5640 500,5640,540,5440 540,5440,580,5220 580,5220,580,5000 580,4960,580,4740 580,4740,960,4700 960,4700,1140,4760 1140,4760,1420,4740 1420,4740,1720,4700 1720,4700,2000,4740 2000,4740,2380,4760 2380,4760,2700,4800 1720,4600,1760,4300 1760,4300,2200,4340 2200,4340,2560,4340 2560,4340,2740,4340 2160,12580,2440,12400 1820,12840,2160,12580 1500,13080,1820,12840 1140,13340,1500,13080 1140,13340,1580,13220 2110,13080,2520,13000 2520,13000,2900,12800 1580,13220,2110,13080 2900,12800,3200,12680 3200,12680,3440,12640 3440,12640,3720,12460 3720,12460,4040,12320 4040,12320,4360,12200 4360,11940,4380,12180 4360,11700,4360,11940 4360,11700,4540,11500 4540,11500,4880,11540 6000,11660,6280,11640 5440,11600,5720,11610 5720,11610,6000,11660 6280,11640,6760,11720 6760,11720,7060,11780 7060,11780,7360,11810 7360,11810,7640,11840 7640,11840,8000,11830 8000,11830,8320,11850 8320,11850,8390,11800 8330,11760,8390,11800 8160,11760,8330,11760 7910,11750,8160,11760 7660,11740,7900,11750 7400,11730,7660,11740 7160,11680,7400,11730 7080,11570,7160,11680 7080,11570,7100,11350 7100,11350,7440,11280 7440,11280,7940,11280 7960,11280,8360,11280 5840,11540,6650,11170 4880,11540,5440,11600 3410,11830,3420,11300 3410,11260,3520,10920 3520,10590,3520,10920 3520,10590,3540,10260 3520,9900,3540,10240 3520,9900,3640,9590 3640,9570,4120,9590 4140,9590,4600,9680 4620,9680,5030,9730 5120,9750,5520,9800 5620,9820,6080,9800 6130,9810,6580,9820 6640,9820,6800,9700 6780,9400,6800,9700 6780,9400,6840,9140 6820,8860,6840,9120 6780,8600,6820,8830 6720,8350,6780,8570 6480,8340,6720,8320 6260,8400,6480,8340 6050,8580,6240,8400 5760,8630,6040,8590 5520,8690,5740,8630 5120,8690,5450,8700 4570,8670,5080,8690 4020,8610,4540,8670 3540,8480,4020,8610 3520,8230,3520,8480 3520,7930,3520,8230 3520,7930,3540,7630 3480,7320,3540,7610 3480,7280,3500,7010 3500,6980,3680,6850 3680,6850,4220,6840 4230,6840,4760,6850 4780,6850,5310,6860 5310,6860,5720,6940 5720,6940,5880,7250 5880,7250,5900,7520 100,11240,440,11300 440,11300,760,11330 1480,11280,1840,11230 2200,11130,2360,11090 1840,11230,2200,11130Rpg Narrative - Choose Your Own Adventure - decision.rb
# ./samples/99_genre_rpg_narrative/choose_your_own_adventure/app/decision.rb # Hey there! Welcome to Four Decisions. Here is how you # create your decision tree. Remove =being and =end from the text to # enable the game (just save the file). Change stuff and see what happens! def game { starting_decision: :stormy_night, decisions: { stormy_night: { description: 'It was a dark and stormy night. (storyline located in decision.rb)', option_one: { description: 'Go to sleep.', decision: :nap }, option_two: { description: 'Watch a movie.', decision: :movie }, option_three: { description: 'Go outside.', decision: :go_outside }, option_four: { description: 'Get a snack.', decision: :get_a_snack } }, nap: { description: 'You took a nap. The end.', option_one: { description: 'Start over.', decision: :stormy_night } } } } endRpg Narrative - Choose Your Own Adventure - main.rb
# ./samples/99_genre_rpg_narrative/choose_your_own_adventure/app/main.rb =begin Reminders: - Hashes: Collection of unique keys and their corresponding values. The values can be found using their keys. In this sample app, the decisions needed for the game are stored in a hash. In fact, the decision.rb file contains hashes inside of other hashes! Each option is a key in the first hash, but also contains a hash (description and decision being its keys) as its value. Go into the decision.rb file and take a look before diving into the code below. - args.outputs.labels: An array. The values generate a label. The parameters are [X, Y, TEXT, SIZE, ALIGNMENT, RED, GREEN, BLUE, ALPHA, FONT STYLE] For more information about labels, go to mygame/documentation/02-labels.md. - args.keyboard.key_down.KEY: Determines if a key is in the down state or pressed down. For more information about the keyboard, go to mygame/documentation/06-keyboard.md. - String interpolation: uses #{} syntax; everything between the #{ and the } is evaluated as Ruby code, and the placeholder is replaced with its corresponding value or result. =end # This sample app provides users with a story and multiple decisions that they can choose to make. # Users can make a decision using their keyboard, and the story will move forward based on user choices. # The decisions available to users are stored in the decision.rb file. # We must have access to it for the game to function properly. GAME_FILE = 'app/decision.rb' # found in app folder require GAME_FILE # require used to load another file, import class/method definitions # Instructions are given using labels to users if they have not yet set up their story in the decision.rb file. # Otherwise, the game is run. def tick args if !args.state.loaded && !respond_to?(:game) # if game is not loaded and not responding to game symbol's method args.labels << [640, 370, 'Hey there! Welcome to Four Decisions.', 0, 1] # a welcome label is shown args.labels << [640, 340, 'Go to the file called decision.rb and tell me your story.', 0, 1] elsif respond_to?(:game) # otherwise, if responds to game args.state.loaded = true tick_game args # calls tick_game method, runs game end if args.state.tick_count.mod_zero? 60 # update every 60 frames t = args.gtk.ffi_file.mtime GAME_FILE # mtime returns modification time for named file if t != args.state.mtime args.state.mtime = t require GAME_FILE # require used to load file args.state.game_definition = nil # game definition and decision are empty args.state.decision_id = nil end end end # Runs methods needed for game to function properly # Creates a rectangular border around the screen def tick_game args defaults args args.borders << args.grid.rect render_decision args process_inputs args end # Sets default values and uses decision.rb file to define game and decision_id # variable using the starting decision def defaults args args.state.game_definition ||= game args.state.decision_id ||= args.state.game_definition[:starting_decision] end # Outputs the possible decision descriptions the user can choose onto the screen # as well as what key to press on their keyboard to make their decision def render_decision args decision = current_decision args # text is either the value of decision's description key or warning that no description exists args.labels << [640, 360, decision[:description] || "No definition found for #{args.state.decision_id}. Please update decision.rb.", 0, 1] # uses string interpolation # All decisions are stored in a hash # The descriptions output onto the screen are the values for the description keys of the hash. if decision[:option_one] args.labels << [10, 360, decision[:option_one][:description], 0, 0] # option one's description label args.labels << [10, 335, "(Press 'left' on the keyboard to select this decision)", -5, 0] # label of what key to press to select the decision end if decision[:option_two] args.labels << [1270, 360, decision[:option_two][:description], 0, 2] # option two's description args.labels << [1270, 335, "(Press 'right' on the keyboard to select this decision)", -5, 2] end if decision[:option_three] args.labels << [640, 45, decision[:option_three][:description], 0, 1] # option three's description args.labels << [640, 20, "(Press 'down' on the keyboard to select this decision)", -5, 1] end if decision[:option_four] args.labels << [640, 700, decision[:option_four][:description], 0, 1] # option four's description args.labels << [640, 675, "(Press 'up' on the keyboard to select this decision)", -5, 1] end end # Uses keyboard input from the user to make a decision # Assigns the decision as the value of the decision_id variable def process_inputs args decision = current_decision args # calls current_decision method if args.keyboard.key_down.left! && decision[:option_one] # if left key pressed and option one exists args.state.decision_id = decision[:option_one][:decision] # value of option one's decision hash key is set to decision_id end if args.keyboard.key_down.right! && decision[:option_two] # if right key pressed and option two exists args.state.decision_id = decision[:option_two][:decision] # value of option two's decision hash key is set to decision_id end if args.keyboard.key_down.down! && decision[:option_three] # if down key pressed and option three exists args.state.decision_id = decision[:option_three][:decision] # value of option three's decision hash key is set to decision_id end if args.keyboard.key_down.up! && decision[:option_four] # if up key pressed and option four exists args.state.decision_id = decision[:option_four][:decision] # value of option four's decision hash key is set to decision_id end end # Uses decision_id's value to keep track of current decision being made def current_decision args args.state.game_definition[:decisions][args.state.decision_id] || {} # either has value or is empty end # Resets the game. $gtk.resetRpg Narrative - Return Of Serenity - lowrez_simulator.rb
# ./samples/99_genre_rpg_narrative/return_of_serenity/app/lowrez_simulator.rb ################################################################################### # YOU CAN PLAY AROUND WITH THE CODE BELOW, BUT USE CAUTION AS THIS IS WHAT EMULATES # THE 64x64 CANVAS. ################################################################################### TINY_RESOLUTION = 64 TINY_SCALE = 720.fdiv(TINY_RESOLUTION + 5) CENTER_OFFSET = 10 EMULATED_FONT_SIZE = 20 EMULATED_FONT_X_ZERO = 0 EMULATED_FONT_Y_ZERO = 46 def tick args sprites = [] labels = [] borders = [] solids = [] mouse = emulate_lowrez_mouse args args.state.show_gridlines = false lowrez_tick args, sprites, labels, borders, solids, mouse render_gridlines_if_needed args render_mouse_crosshairs args, mouse emulate_lowrez_scene args, sprites, labels, borders, solids, mouse end def emulate_lowrez_mouse args args.state.new_entity_strict(:lowrez_mouse) do |m| m.x = args.mouse.x.idiv(TINY_SCALE) - CENTER_OFFSET.idiv(TINY_SCALE) - 1 m.y = args.mouse.y.idiv(TINY_SCALE) if args.mouse.click m.click = [ args.mouse.click.point.x.idiv(TINY_SCALE) - CENTER_OFFSET.idiv(TINY_SCALE) - 1, args.mouse.click.point.y.idiv(TINY_SCALE) ] m.down = m.click else m.click = nil m.down = nil end if args.mouse.up m.up = [ args.mouse.up.point.x.idiv(TINY_SCALE) - CENTER_OFFSET.idiv(TINY_SCALE) - 1, args.mouse.up.point.y.idiv(TINY_SCALE) ] else m.up = nil end end end def render_mouse_crosshairs args, mouse return unless args.state.show_gridlines args.labels << [10, 25, "mouse: #{mouse.x} #{mouse.y}", 255, 255, 255] end def emulate_lowrez_scene args, sprites, labels, borders, solids, mouse args.render_target(:lowrez).solids << [0, 0, 1280, 720] args.render_target(:lowrez).sprites << sprites args.render_target(:lowrez).borders << borders args.render_target(:lowrez).solids << solids args.outputs.primitives << labels.map do |l| as_label = l.label l.text.each_char.each_with_index.map do |char, i| [CENTER_OFFSET + EMULATED_FONT_X_ZERO + (as_label.x * TINY_SCALE) + i * 5 * TINY_SCALE, EMULATED_FONT_Y_ZERO + (as_label.y * TINY_SCALE), char, EMULATED_FONT_SIZE, 0, as_label.r, as_label.g, as_label.b, as_label.a, 'fonts/dragonruby-gtk-4x4.ttf'].label end end args.sprites << [CENTER_OFFSET, 0, 1280 * TINY_SCALE, 720 * TINY_SCALE, :lowrez] end def render_gridlines_if_needed args if args.state.show_gridlines && args.static_lines.length == 0 args.static_lines << 65.times.map do |i| [ [CENTER_OFFSET + i * TINY_SCALE + 1, 0, CENTER_OFFSET + i * TINY_SCALE + 1, 720, 128, 128, 128], [CENTER_OFFSET + i * TINY_SCALE, 0, CENTER_OFFSET + i * TINY_SCALE, 720, 128, 128, 128], [CENTER_OFFSET, 0 + i * TINY_SCALE, CENTER_OFFSET + 720, 0 + i * TINY_SCALE, 128, 128, 128], [CENTER_OFFSET, 1 + i * TINY_SCALE, CENTER_OFFSET + 720, 1 + i * TINY_SCALE, 128, 128, 128] ] end elsif !args.state.show_gridlines args.static_lines.clear end endRpg Narrative - Return Of Serenity - main.rb
# ./samples/99_genre_rpg_narrative/return_of_serenity/app/main.rb require 'app/require.rb' def defaults args args.outputs.background_color = [0, 0, 0] args.state.last_story_line_text ||= "" args.state.scene_history ||= [] args.state.storyline_history ||= [] args.state.word_delay ||= 8 if args.state.tick_count == 0 args.gtk.stop_music args.outputs.sounds << 'sounds/static-loop.ogg' end if args.state.last_story_line_text lines = args.state .last_story_line_text .gsub("-", "") .gsub("~", "") .wrapped_lines(50) args.outputs.labels << lines.map_with_index { |l, i| [690, 200 - (i * 25), l, 1, 0, 255, 255, 255] } elsif args.state.storyline_history[-1] lines = args.state .storyline_history[-1] .gsub("-", "") .gsub("~", "") .wrapped_lines(50) args.outputs.labels << lines.map_with_index { |l, i| [690, 200 - (i * 25), l, 1, 0, 255, 255, 255] } end return if args.state.current_scene set_scene(args, day_one_beginning(args)) end def inputs_move_player args if args.state.scene_changed_at.elapsed_time > 5 if args.keyboard.down || args.keyboard.s || args.keyboard.j args.state.player.y -= 0.25 elsif args.keyboard.up || args.keyboard.w || args.keyboard.k args.state.player.y += 0.25 end if args.keyboard.left || args.keyboard.a || args.keyboard.h args.state.player.x -= 0.25 elsif args.keyboard.right || args.keyboard.d || args.keyboard.l args.state.player.x += 0.25 end args.state.player.y = 60 if args.state.player.y > 63 args.state.player.y = 0 if args.state.player.y < -3 args.state.player.x = 60 if args.state.player.x > 63 args.state.player.x = 0 if args.state.player.x < -3 end end def null_or_empty? ary return true unless ary return true if ary.length == 0 return false end def calc_storyline_hotspot args hotspots = args.state.storylines.find_all do |hs| args.state.player.inside_rect?(hs.shift_rect(-2, 0)) end if !null_or_empty?(hotspots) && !args.state.inside_storyline_hotspot _, _, _, _, storyline = hotspots.first queue_storyline_text(args, storyline) args.state.inside_storyline_hotspot = true elsif null_or_empty?(hotspots) args.state.inside_storyline_hotspot = false args.state.storyline_queue_empty_at ||= args.state.tick_count args.state.is_storyline_dialog_active = false args.state.scene_storyline_queue.clear end end def calc_scenes args hotspots = args.state.scenes.find_all do |hs| args.state.player.inside_rect?(hs.shift_rect(-2, 0)) end if !null_or_empty?(hotspots) && !args.state.inside_scene_hotspot _, _, _, _, scene_method_or_hash = hotspots.first if scene_method_or_hash.is_a? Symbol set_scene(args, send(scene_method_or_hash, args)) args.state.last_hotspot_scene = scene_method_or_hash args.state.scene_history << scene_method_or_hash else set_scene(args, scene_method_or_hash) end args.state.inside_scene_hotspot = true elsif null_or_empty?(hotspots) args.state.inside_scene_hotspot = false end end def null_or_whitespace? word return true if !word return true if word.strip.length == 0 return false end def calc_storyline_presentation args return unless args.state.tick_count > args.state.next_storyline return unless args.state.scene_storyline_queue next_storyline = args.state.scene_storyline_queue.shift if null_or_whitespace? next_storyline args.state.storyline_queue_empty_at ||= args.state.tick_count args.state.is_storyline_dialog_active = false return end args.state.storyline_to_show = next_storyline args.state.is_storyline_dialog_active = true args.state.storyline_queue_empty_at = nil if next_storyline.end_with?(".") || next_storyline.end_with?("!") || next_storyline.end_with?("?") || next_storyline.end_with?("\"") args.state.next_storyline += 60 elsif next_storyline.end_with?(",") args.state.next_storyline += 50 elsif next_storyline.end_with?(":") args.state.next_storyline += 60 else default_word_delay = 13 + args.state.word_delay - 8 if next_storyline.gsub("-", "").gsub("~", "").length <= 4 default_word_delay = 11 + args.state.word_delay - 8 end number_of_syllabals = next_storyline.length - next_storyline.gsub("-", "").length args.state.next_storyline += default_word_delay + number_of_syllabals * (args.state.word_delay + 1) end end def inputs_reload_current_scene args return if args.inputs.keyboard.key_down.r! reload_current_scene end end def inputs_dismiss_current_storyline args if args.inputs.keyboard.key_down.x! args.state.scene_storyline_queue.clear end end def inputs_restart_game args if args.inputs.keyboard.exclamation_point args.gtk.reset_state end end def inputs_change_word_delay args if args.inputs.keyboard.key_down.plus || args.inputs.keyboard.key_down.equal_sign args.state.word_delay -= 2 if args.state.word_delay < 0 args.state.word_delay = 0 # queue_storyline_text args, "Text speed at MAXIMUM. Geez, how fast do you read?" else # queue_storyline_text args, "Text speed INCREASED." end end if args.inputs.keyboard.key_down.hyphen || args.inputs.keyboard.key_down.underscore args.state.word_delay += 2 # queue_storyline_text args, "Text speed DECREASED." end end def multiple_lines args, x, y, texts, size = 0, minimum_alpha = nil texts.each_with_index.map do |t, i| [x, y - i * (25 + size * 2), t, size, 0, 255, 255, 255, adornments_alpha(args, 255, minimum_alpha)] end end def lowrez_tick args, lowrez_sprites, lowrez_labels, lowrez_borders, lowrez_solids, lowrez_mouse # args.state.show_gridlines = true defaults args render_current_scene args, lowrez_sprites, lowrez_labels, lowrez_solids render_controller args, lowrez_borders lowrez_solids << [0, 0, 64, 64, 0, 0, 0] calc_storyline_presentation args calc_scenes args calc_storyline_hotspot args inputs_move_player args inputs_print_mouse_rect args, lowrez_mouse inputs_reload_current_scene args inputs_dismiss_current_storyline args inputs_change_word_delay args inputs_restart_game args end def render_controller args, lowrez_borders args.state.up_button = [85, 40, 15, 15, 255, 255, 255] args.state.down_button = [85, 20, 15, 15, 255, 255, 255] args.state.left_button = [65, 20, 15, 15, 255, 255, 255] args.state.right_button = [105, 20, 15, 15, 255, 255, 255] lowrez_borders << args.sta